MATH 221-02 (Kunkle), Quiz 4
10 pts, 10 minutes

Name:
Feb 15, 2024
$1(10 \mathrm{pts})$. Let $g(x, y)=\frac{x}{2 x-y}$. Find $g_{x}, g_{y}, g_{x x}, g_{x y}$, and $g_{y y}$.
Express your answers either as products (using negative exponents), or as quotients in lowest terms. Perform basic simplifications.

Solution:

1.(Source: $14.3 \cdot 22,23,55)$ Here a solution using the product and chain rules. It pays to factor out the lowest power of $2 x-y$ throughout.

$$
\begin{aligned}
g & =x(2 x-y)^{-1} & g_{x x} & =4 y(2 x-y)^{-3} \\
g_{x} & =(2 x-y)^{-1}+x(-1)(2 x-y)^{-2} 2 & g_{x y} & =-(2 x-y)^{-2}-y(-2)(2 x-y)^{-3}(-1) \\
& =(2 x-y-2 x)(2 x-y)^{-2} & & =-(2 x-y)^{-3}(2 x-y+2 y) \\
& =-y(2 x-y)^{-2} & & =-(2 x-y)^{-3}(2 x+y) \\
g_{y} & =x(2 x-y)^{-2} & g_{y y} & =2 x(2 x-y)^{-3}
\end{aligned}
$$

If you used the quotient and chain rules, your answers should look like this:

$$
\begin{aligned}
& g_{x}=\frac{1(2 x-y)-x \cdot 2}{(2 x-y)^{2}}=\frac{-y}{(2 x-y)^{2}} \\
& g_{y}=\frac{0(2 x-y)-x \cdot(-1)}{(2 x-y)^{2}}=\frac{x}{(2 x-y)^{2}} \\
& g_{x x}=\frac{0(2 x-y)^{2}+y 2(2 x-y) 2}{(2 x-y)^{4}}=\frac{4 y}{(2 x-y)^{3}} \\
& g_{x y}=\frac{-1(2 x-y)^{2}+y 2(2 x-y)(-1)}{(2 x-y)^{4}}=\frac{-1(2 x-y)-2 y}{(2 x-y)^{3}}=\frac{-(2 x+y)}{(2 x-y)^{3}} \\
& g_{y y}=\frac{0(2 x-y)^{2}-x \cdot 2(2 x-y)(-1)}{(2 x-y)^{4}}=\frac{2 x}{(2 x-y)^{3}}
\end{aligned}
$$

