MATH 221-02 (Kunkle), Quiz 1
$10 \mathrm{pts}, 10$ minutes

Name:
Jan 18, 2024

1 (10 pts). Let $\mathbf{u}=\langle 2,-3,1\rangle$ and $\mathbf{v}=\langle-1,-2,1\rangle$.
a. Find the vector projection of \mathbf{v} onto \mathbf{u}.
b. Find the scalar projection of \mathbf{v} onto \mathbf{u}.

Solution:

1a.(Source: 12.3.41-42)

$$
\begin{aligned}
\operatorname{proj}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} & =\frac{2 \cdot(-1)+(-3) \cdot(-2)+1 \cdot 1}{2^{2}+(-3)^{2}+1^{2}}\langle 2,-3,1\rangle \\
& =\frac{5}{14}\langle 2,-3,1\rangle, \text { or }\left\langle\frac{5}{7}, \frac{-15}{14}, \frac{5}{14}\right\rangle .
\end{aligned}
$$

1b.(Source: 12.3.42)

$$
\operatorname{comp}_{\mathbf{u}} \mathbf{v}=\frac{\mathbf{v} \cdot \mathbf{u}}{|\mathbf{u}|}=\frac{5}{\sqrt{14}}
$$

The scalar projection is the same as $|\mathbf{v}| \cos \theta$, the signed length of the vector projection. In this case, the sign is positive, because the projection of \mathbf{v} onto \mathbf{u} points in the same direction as \mathbf{u}.

