MATH 221-02 (Kunkle), Exam 4 100 pts, 75 minutes

Name:
Apr 11, 2024

No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.

$$
\begin{aligned}
& \int \sin ^{n} x d x=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} \int \sin ^{n-2} x d x \\
& \int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x \\
& \int \tan ^{n} x d x=\frac{1}{n-1} \tan ^{n-1} x-\int \tan ^{n-2} x d x \\
& \int \sec ^{n} x d x=\frac{1}{n-1} \sec ^{n-2} x \tan x+\frac{n-2}{n-1} \int \sec ^{n-2} x d x \quad(n \neq 1)
\end{aligned}
$$

$1(16 \mathrm{pts})$. Let T be the interior of the triangle in the $x y$-plane with vertices $(0,0),(1,-1)$, $(2,1)$. Rewrite the double integral $\iint_{T}(2 x-y) d A$ as an iterated integral in the variables $u=x-2 y$ and $v=x+y$, but do not evaluate.
$2(12 \mathrm{pts})$. Let $\mathbf{F}=y^{2} \mathbf{i}+z^{2} \mathbf{j}+\left(x^{2}+z^{2}\right) \mathbf{k}$. Find each of the following or state that it does not exist.
a. $\operatorname{curl} \mathbf{F}$
b. $\operatorname{div} \mathbf{F}$
c. $\operatorname{grad}(\operatorname{div} \mathbf{F})$
$3(14 \mathrm{pts})$. Find a potential function or show that none exists.
a. $\langle 2 y, 1\rangle$
b. $\left\langle 2 x+2 x y^{2}, 2 x^{2} y+e^{y}\right\rangle$
$4(32 \mathrm{pts})$. Evaluate the given line integral.
a. $\int_{B} 2 y d x+d y$, where B is the line segment from $(-1,0)$ to $(0,2)$.
b. $\int_{C}\left(2 x+2 x y^{2}\right) d x+\left(2 x^{2} y+e^{y}\right) d y$, where C is parametrized by $\mathbf{r}(t)=\left\langle t^{2}+t, 2 t^{2}+t\right\rangle$ for $0 \leq t \leq 1$.
c. $\int_{B} 2 y d s$, where B is the line segment from $(-1,0)$ to $(0,2)$.
d. $\int_{D}\left(2 y+e^{x^{2}}\right) d x+(x+\cos \sqrt{y}) d y$, where D is the closed path consisting of the line segment from $(0,0)$ to $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, the arc of the unit circle up to $(0,1)$, and the line segment back down to $(0,0)$.

$5(12 \mathrm{pts})$. Let P be the surface parametrized by $\mathbf{r}(u, v)=\langle u+v, u v, u-v\rangle$. Find the plane tangent to P at the point (x, y, z) corresponding to $u=3, v=1$. Express the plane either parametrically or as an equation in x, y, and z.
$6(10 \mathrm{pts})$. Find a parametrization of the part of the cone $x^{2}=y^{2}+z^{2}$ between $x=2$ and $x=3$ for which $y \geq 0$. State the (constant) limits of your parameters necessary to generate this surface exactly one time.
$7(4 \mathrm{pts})$. Find the graph of the given vector field.

$$
\mathbf{F}(x, y)=\langle 1,1\rangle \quad \mathbf{G}(x, y)=\langle y,-x\rangle \quad \mathbf{H}(x, y)=\langle x+y, x\rangle \quad \mathbf{K}(x, y)=\langle y, y\rangle
$$

$1(16 \mathrm{pts})$.(Source: 15.9 .15$) \quad$ Solve for x and y to find

$$
x=\frac{1}{3} u+\frac{2}{3} v \quad y=-\frac{1}{3} u+\frac{1}{3} v
$$

Equations of the edges of the triangle are

$$
\begin{aligned}
& x-2 y=0 \quad x+y=0 \quad 2 x-y=3 \\
& u=0 \quad v=0 \quad u+v=3
\end{aligned}
$$

The Jacobian is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
x_{u} & x_{v} \\
y_{u} & y_{v}
\end{array}\right|=\left|\begin{array}{cc}
1 / 3 & 2 / 3 \\
-1 / 3 & 1 / 3
\end{array}\right|=\frac{1}{3}
$$

and the integrand $2 x-y=u+v$. In these new variables, the double integral is

$$
\int_{0}^{3} \int_{0}^{3-u}(u+v) \frac{1}{3} d v d u
$$

2. (Source: 16.5.1,12)

$\operatorname{grad}=\nabla$	$\operatorname{div}=\nabla$.	$\operatorname{curl}=\nabla \times$
grad scalar $=$ vector	div vector $=$ scalar	curl vector $=$ vector
grad vector DNE	div scalar DNE	curl scalar DNE

2a.(5 pts) curl $\mathbf{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \times\left\langle y^{2}, z^{2}, x^{2}+z^{2}\right\rangle=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^{2} & z^{2} & x^{2}+z^{2}\end{array}\right|=\langle-2 z,-2 x,-2 y\rangle$.
2 b .(4 pts) $\operatorname{div} \mathbf{F}=\left\langle\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right\rangle \cdot\left\langle y^{2}, z^{2}, x^{2}+z^{2}\right\rangle=\left(y^{2}\right)_{x}+\left(z^{2}\right)_{y}+\left(x^{2}+z^{2}\right)_{z}=0+0+2 z=2 z$. 2c.(3 pts) $\operatorname{grad}(\operatorname{div} \mathbf{F})=\nabla 2 z=\left\langle(2 z)_{x},(2 z)_{y},(2 z)_{z}\right\rangle=\langle 0,0,2\rangle$.

3a(4 pts).(Source: 16.3.3-10) If $f_{x}=2 y$ and $f_{y}=1$, then $f_{x y}=2$ and $f_{y x}=0$, a contradiction. Therefore, $\langle 2 y, 1\rangle$ has no potential.
$3 \mathrm{~b}(10 \mathrm{pts})$.(Source: 16.3.3-10) $\quad f_{x}=2 x+2 x y^{2} \quad \Longrightarrow \quad f=x^{2}+x^{2} y^{2}+C(y) \quad \Longrightarrow \quad f_{y}=$ $2 x^{2} y+C^{\prime}(y)$. Set this equal to $2 x^{2} y+e^{y}$ to obtain $C^{\prime}(y)=e^{y}$, and therefore $C=e^{y}+$ any constant. There's a different (correct) answer for every choice of this constant. Choosing the constant 0 gives the potential function $f(x, y)=x^{2}+x^{2} y^{2}+e^{y}$.
$4 \mathrm{a}(8 \mathrm{pts})$.(Source: 16.2.7) Can parametrize the line segment B with $x=t, d x=d t, y=$ $2(t+1), d y=2 d t$ for $-1 \leq t \leq 0$ and the integral becomes

$$
\int_{-1}^{0} 4(t+1) d t+2 d t=2 \int_{-1}^{0}(2 t+3) d t=\left.2\left(t^{2}+3 t\right)\right|_{-1} ^{0}=4
$$

4 b (6 pts)(Source: 16.3.13) Use the potential found in 3 b . The curve begins and ends at $\mathbf{r}(0)=(0,0)$ and $\mathbf{r}(1)=(2,3)$, and by the Fundamental Theorem of Calculus for line integrals,

$$
\int_{C}\left(2 x+2 x y^{2}\right) d x+\left(2 x^{2} y+e^{y}\right) d y=\left.\left(x^{2}+x^{2} y^{2}+e^{y}\right)\right|_{(0,0)} ^{(2,3)}=39+e^{3}
$$

It's not practical to evaluate the integral by using the given parametrization $\left(x=t^{2}+t\right.$, $\left.d x=(2 t+1) d t, y=2 t^{2}+t, d y=(4 t+1) d t\right)$ unless you notice that

$$
\begin{aligned}
\int\left(2\left(t^{2}+t\right)(2 t+1)+2\left(t^{2}+t\right)\right. & \left(2 t^{2}+t\right)^{2}(2 t+1) \\
+2\left(t^{2}+t\right)^{2} & \left.\left(2 t^{2}+t\right)(4 t+1)+e^{2 t^{2}+t}(4 t+1)\right) d t \\
& =\left(t^{2}+t\right)^{2}+\left(t^{2}+t\right)^{2}\left(2 t^{2}+t\right)^{2}+e^{2 t^{2}+t}+C
\end{aligned}
$$

$4 \mathrm{c}(8 \mathrm{pts})$.(Source: 16.2 .9) Using the parametrization for B found in a,

$$
\begin{aligned}
\int_{B} 2 y d s=\int_{-1}^{0} 4(t+1) \frac{d s}{d t} d t & =\int_{-1}^{0} 4(t+1) \sqrt{\frac{d x}{d t}^{2}+\frac{d y}{d t}^{2}} d t \\
& =4 \sqrt{5} \int_{-1}^{0}(t+1) d t=\left.4 \sqrt{5}\left(\frac{1}{2} t^{2}+t\right)\right|_{-1} ^{0}=2 \sqrt{5}
\end{aligned}
$$

$4 \mathrm{~d}(10 \mathrm{pts})$.(Source: $16 \cdot 4 \cdot 6,7)$ Since D is a closed path, we can apply Green's Theorem. Let \mathcal{D} denote the interior of D, and rewrite the line integral:

$$
\int_{D}\left(2 y+e^{x^{2}}\right) d x+(x+\cos \sqrt{y}) d y=\iint_{\mathcal{D}}\left((x+\cos \sqrt{y})_{x}-\left(2 y+e^{x^{2}}\right)_{y}\right) d A=\iint_{\mathcal{D}}(-1) d A
$$

This equals -1 times the area of the eighth-circle \mathcal{D}, or $-\frac{\pi}{8}$
$5(12 \mathrm{pts})$.(Source: 16.6 .33) The plane passes through the point $\mathbf{r}(3,1)=\langle 4,3,2\rangle$ and is parallel the vectors

$$
\mathbf{r}_{u}=\langle 1, v, 1\rangle=\langle 1,1,1\rangle \text { and } \mathbf{r}_{v}=\langle 1, u,-1\rangle=\langle 1,3,-1\rangle
$$

The plane is given in parametric form by the function

$$
\mathbf{b}(u, v)=\langle 4,3,2\rangle+u\langle 1,1,1\rangle+v\langle 1,3,-1\rangle
$$

To write its $x y z$-equation, find the normal vector by crossing:

$$
\mathbf{r}_{u} \times \mathbf{r}_{v}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right|=\langle-4,2,2\rangle
$$

Then the tangent plane is the graph of the equation $-4(x-4)+2(y-3)+2(z-2)=0$.
$6(10 \mathrm{pts})$.(Source: 16.6.25) For each x between 2 and $3,(y, z)$ lie on the circle centered at $(0,0)$ having radius x. We can use $\pm x \sin \theta$ and $\pm x \cos \theta$ for y and z, but since we want $y \geq 0$, it's simplest to use $y=x \sin \theta$ and $z=x \cos \theta$ so that $y \geq 0$ for $0 \leq \theta \leq \pi$. Altogether, the parametrization is

$$
\langle x, x \sin \theta, s \cos \theta\rangle \quad 2 \leq x \leq 3,0 \leq \theta \leq \pi
$$

7 (4 pts).(Source: $16.1 .29-32$) a. iii. b. v. c. i. d. vi.
Notes: \mathbf{F} is constant. \mathbf{G} is orthogonal to the position vector $\langle x, y\rangle$. In c , when $x=0, \mathbf{H}$ is a multiple of \mathbf{i}, and when $y=0, \mathbf{H}$ is a multiple of $\mathbf{i}+\mathbf{j}$. Above [below] the x-axis, \mathbf{K} is a positive [negative] multiple of $\langle 1,1\rangle$.

