MATH 221-02 (Kunkle), Exam 2
100 pts, 75 minutes
Name:
Feb 22, 2024
Page 1 of 2
No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.
$1(19 \mathrm{pts})$. Find the locations (x, y) of all local extrema and saddle points of $h(x, y)=$ $x^{3}-y^{3}-6 x y+6$ and state which is which.
$2(17 \mathrm{pts})$. A particle is at position $\mathbf{r}=\left\langle e^{t}, t \sqrt{2}, e^{-t}\right\rangle$ at time t.
a. Find the distance travelled by the particle between times $t=-1$ and $t=1$.
b. Find the particle's velocity, acceleration, and normal and tangential components of acceleration at time $t=0$. Label your answers so I can tell which is which.
$3(23 \mathrm{pts})$. The curve parametrized by $x=t, y=3 t-\frac{t^{2}+1}{2}, z=4 t-t^{2}$ passes through the point (1, 2, 3). Find the following.
a. \mathbf{T}, \mathbf{N}, and \mathbf{B} at the point $(1,2,3)$. Label your answers.
b. The plane parallel both \mathbf{T} and \mathbf{N} and passing through $(1,2,3)$.
$4(10 \mathrm{pts})$. Find the linearization of $p(x, y)=\left(x^{2}-y^{2}\right)^{3 / 2}$ at the point $(x, y)=(\sqrt{3}, \sqrt{2})$.
5. Let $g(x, y, z)=x y-y z+x z$.
$\mathrm{a}(8 \mathrm{pts})$. Find the derivative of g in the direction $\frac{1}{\sqrt{2}}\langle 1,-1,0\rangle$ at the point $(1,0,2)$.
$\mathrm{b}(3 \mathrm{pts})$. In what direction does the greatest derivative of g at $(1,0,2)$ occur? Express your answer as a unit vector.
$\mathrm{c}(3 \mathrm{pts})$. Find the equation of the plane tangent to $x y-y z+x z=2$ at $(1,0,2)$.
$\mathrm{d}(5 \mathrm{pts})$. Suppose that x and y are functions of t. Find $\frac{d g}{d t}$ at $t=0$ if, at that time, $x=1$, $y=0, z=2, \frac{d x}{d t}=-3, \frac{d y}{d t}=-4$, and $\frac{d z}{d t}=5$.
$6(8 \mathrm{pts})$. Choose one of the two limits below, and then either evaluate the limit or explain why it does not exist. Clearly indicate which problem you're solving.
a. $\lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{x+y+9}-3}{x+y}$
b. $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{4}}{2 x^{2}+y^{2}}$
$7(4 \mathrm{pts})$. Find the graph of given function.
a. $\sqrt{4-x^{2}-y^{2}}$
b. $\sqrt{x^{2}+y^{2}}$
c. $\frac{1}{1+x^{2}+y^{2}}$
d. $1-2 x+3 y$

1.

6.

3.

8.

1 (19 pts).(Source: 14.7.more.11) Search for critical points:

$$
\begin{aligned}
& h_{x}(x, y)=3 x^{2}-6 y=0 \Rightarrow y=\frac{1}{2} x^{2} \\
& h_{y}(x, y)-3 y^{2}-6 x=0 \Rightarrow x=-\frac{1}{2} y^{2}=-\frac{1}{2}\left(\frac{1}{2} x^{2}\right)^{2}=-\frac{1}{8} x^{4}
\end{aligned}
$$

Factoring $0=x^{4}+8 x=x\left(x^{3}+8\right)$ yields $x=0$ and $x=-2$ Use $y=\frac{1}{2} x^{2}$ to find the accompanying y-values 0 and 2
Now use the Second Derivative Test at the critical points.

$$
D=\left|\begin{array}{ll}
h_{x x} & h_{x y} \\
h_{x y} & h_{y y}
\end{array}\right|=\left|\begin{array}{cc}
6 x & -6 \\
-6 & -6 y
\end{array}\right|=6 \cdot 6\left|\begin{array}{cc}
x & -1 \\
-1 & -y
\end{array}\right|=36(-x y-1)
$$

critical point	D	$h_{x x}$	conclusion
$(-2,2)$	$36 \cdot 3$	-6	local maximum
$(0,0)$	-36	irrelevant	saddle point

$2 \mathrm{a}(10 \mathrm{pts})$.(Source: $13.3 .3,13.4 .41,42) \quad$ Velocity is $\mathbf{v}=\frac{d \mathbf{r}}{d t}=\left\langle e^{t}, \sqrt{2},-e^{-t}\right\rangle$, and arclength is the integral of speed:

$$
\begin{aligned}
s & =\int_{-1}^{1}\left|\left\langle e^{t}, \sqrt{2},-e^{-t}\right\rangle\right| d t=\int_{-1}^{1} \sqrt{e^{2 t}+2+e^{-2 t}} d t=\int_{-1}^{1} \sqrt{\left(e^{t}+e^{-t}\right)^{2}} d t \\
& =\int_{-1}^{1}\left(e^{t}+e^{-t}\right) d t=\left.\left(e^{t}-e^{-t}\right)\right|_{-1} ^{1}=\left(e-e^{-1}\right)-\left(e^{-1}-e\right)=2 e-2 e^{-1}
\end{aligned}
$$

$2 \mathrm{~b}(7 \mathrm{pts})$. At time $t=0$, velocity and acceleration are

$$
\begin{aligned}
& \mathbf{v}=\frac{d \mathbf{r}}{d t}=\left\langle e^{t}, \sqrt{2},-e^{-t}\right\rangle=\langle 1, \sqrt{2},-1\rangle \\
& \mathbf{a}=\frac{d^{2} \mathbf{r}}{d t^{2}}=\left\langle e^{t}, 0, e^{-t}\right\rangle=\langle 1,0,1\rangle
\end{aligned}
$$

The normal and tangential components of \mathbf{a} are

$$
a_{T}=\frac{\mathbf{v} \cdot \mathbf{a}}{|\mathbf{v}|}=\frac{\langle 1, \sqrt{2},-1\rangle \cdot\langle 1,0,1\rangle}{|\langle 1, \sqrt{2},-1\rangle|}=0 \quad a_{N}=\sqrt{|\mathbf{a}|^{2}-a_{T}^{2}}=|\mathbf{a}|=\sqrt{2}
$$

$3(23 \mathrm{pts})$.(Source: 13.3.21-23, 47-50) Note that $\mathbf{r}(t)=\left\langle t, 3 t-\frac{t^{2}+1}{2}, 4 t-t^{2}\right\rangle=\langle 1,2,3\rangle$ at $t=1$. Compute \mathbf{v} and \mathbf{a} at that time:

$$
\begin{aligned}
& \mathbf{v}=\frac{d \mathbf{r}}{d t}=\langle 1,3-t, 4-2 t\rangle=\langle 1,2,2\rangle \\
& \mathbf{a}=\frac{d^{2} \mathbf{r}}{d t^{2}}=\langle 0,-1,-2\rangle
\end{aligned}
$$

The cross product of these is

$$
\mathbf{v} \times \mathbf{a}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 2 \\
0 & -1 & -2
\end{array}\right|=\left|\begin{array}{cc}
2 & 2 \\
-1 & -2
\end{array}\right| \mathbf{i}-\left|\begin{array}{cc}
1 & 2 \\
0 & -2
\end{array}\right| \mathbf{j}+\left|\begin{array}{cc}
1 & 2 \\
0 & -1
\end{array}\right| \mathbf{k}=\langle-2,2,-1\rangle .
$$

Now we can answer part a.:

$$
\begin{aligned}
\mathbf{T} & =\frac{\mathbf{v}}{|\mathbf{v}|}=\frac{1}{3}\langle 1,2,2\rangle \\
\mathbf{B} & =\frac{\mathbf{v} \times \mathbf{a}}{|\mathbf{v} \times \mathbf{a}|}=\frac{1}{3}\langle-2,2,-1\rangle \\
\mathbf{N} & =\mathbf{B} \times \mathbf{T}=\frac{1}{9}\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & 2 & 2 \\
-2 & 2 & -1
\end{array}\right|=\frac{1}{9}\langle-6,-3,6\rangle=\frac{1}{3}\langle-2,-1,2\rangle
\end{aligned}
$$

The plane described in part b is the osculating plane. We can use $\mathbf{v} \times \mathbf{a}=\langle-2,2,-1\rangle$ as its normal vector, and so its equation is

$$
-2(x-1)+2(y-2)-(z-3)=0
$$

4(10 pts).(Source: 14.4.11-16)

$$
\begin{array}{ll}
p(x, y)=\left(x^{2}-y^{2}\right)^{3 / 2} & p(\sqrt{3}, \sqrt{2})=(3-2)^{3 / 2}=1 \\
p_{x}(x, y)=3 x\left(x^{2}-y^{2}\right)^{1 / 2} & p_{x}(\sqrt{3}, \sqrt{2})=3 \sqrt{3}(3-2)^{1 / 2}=3 \sqrt{3} \\
p_{y}(x, y)=-3 y\left(x^{2}-y^{2}\right)^{1 / 2} & p_{y}(\sqrt{3}, \sqrt{2})=-3 \sqrt{2}(3-2)^{1 / 2}=-3 \sqrt{2}
\end{array}
$$

The linearization of p is

$$
\begin{aligned}
L(x, y) & =p(\sqrt{3}, \sqrt{2})+p_{x}(\sqrt{3}, \sqrt{2})(x-\sqrt{3})+p_{y}(\sqrt{3}, \sqrt{2})(y-\sqrt{2}) \\
& =1+3 \sqrt{3}(x-\sqrt{3})-3 \sqrt{2}(y-\sqrt{2})
\end{aligned}
$$

5a(8 pts).(Source: 14.6.15) $\quad \nabla g=\langle y+z, x-z, x-y\rangle$, which, at the point $(1,0,2)$ equals $\langle 2,-1,1\rangle$. The directional derivative in the direction $\frac{1}{\sqrt{2}}\langle 1,-1,0\rangle$ is

$$
\frac{1}{\sqrt{2}}\langle 1,-1,0\rangle \cdot \nabla g=\frac{1}{\sqrt{2}}\langle 1,-1,0\rangle \cdot\langle 2,-1,1\rangle=\frac{3}{\sqrt{2}} .
$$

$5 \mathrm{~b}(3 \mathrm{pts})$.(Source: 14.6.21) The greatest directional derivative of g at $(1,0,2)$ occurs in the direction of the gradient: $\frac{1}{\sqrt{6}}\langle 2,-1,1\rangle$.
$5 \mathrm{c}(3 \mathrm{pts})$.(Source: 14.6 .44$)$ The gradient at $(1,0,2)$ is perpendicular to the level surface $x y-y z+x z=2$, so the plane tangent to the surface there is given by

$$
2(x-1)-y+z-1=0, \text { or } 2 x-y+z=4
$$

$5 \mathrm{~d}(5 \mathrm{pts}) \cdot($ Source: $14.5 .13,14) \quad$ By the chain rule,

$$
\frac{d g}{d t}=\frac{\partial g}{\partial x} \frac{d x}{d t}+\frac{\partial g}{\partial y} \frac{d y}{d t}+\frac{\partial g}{\partial z} \frac{d z}{d t}=\langle 2,-1,1\rangle \cdot\langle-3,-4,5\rangle=-6+4+5=3
$$

$6 \mathrm{a}(8 \mathrm{pts})$.(Source: 14.2 .17) Rationalize the numerator:

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow(0,0)} \frac{\sqrt{x+y+9}-3}{x+y} \cdot \frac{\sqrt{x+y+9}+3}{\sqrt{x+y+9}+3}=\lim _{(x, y) \rightarrow(0,0)} \frac{x+y+9-9}{(x+y)(\sqrt{x+y+9}+3)} \\
& =\lim _{(x, y) \rightarrow(0,0)} \frac{1}{\sqrt{x+y+9}+3}=\frac{1}{3+3}=\frac{1}{6} .
\end{aligned}
$$

$6 \mathrm{~b}(8 \mathrm{pts})$.(Source: 14.2 .16) After taking the limit along a few different paths to the origin and always getting zero, I suspect that the limit is zero. Since there's no common factor I can cancel, I'll try the squeeze theorem.
Observe that

$$
0 \leq \frac{2 x^{2}}{2 x^{2}+y^{2}} \leq 1
$$

Multiply by the (positive quantity) x^{2} to obtain

$$
0 \leq \frac{2 x^{4}}{2 x^{2}+y^{2}} \leq x^{2}
$$

Since $\lim _{(x, y) \rightarrow(0,0)} 0$ and $\lim _{(x, y) \rightarrow(0,0)} x^{2}$ both equal 0 , the squeeze theorem implies that

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{2 x^{4}}{2 x^{2}+y^{2}}=0
$$

$7(4 \mathrm{pts}) \cdot($ Source: 14.1 .32$) \quad \mathrm{a} 3, \mathrm{~b} 6, \mathrm{c} 4, \mathrm{~d} 1$.

