MATH 221-02 (Kunkle), Exam 1
100 pts, 75 minutes

Name:
Feb 1, 2024
Page 1 of 2

No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 3 points.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.
$1(26 \mathrm{pts})$. Find the following if $\mathbf{f}=\langle 1,-2,2\rangle$ and $\mathbf{g}=\langle 2,-3,6\rangle$.
a. $\mathbf{f}-2 \mathbf{g}$
b. $|-5 \mathbf{f}|$
c. The angle between \mathbf{f} and \mathbf{g}.
d. A unit vector in the same direction as \mathbf{f}.
e. A nonzero vector perpendicular to both \mathbf{f} and \mathbf{g}.
f. The vector projection of \mathbf{g} onto \mathbf{f}.
2. Find an equation (or equations) of the given line or plane.
$\mathrm{a}(7 \mathrm{pts})$. The plane passing through the points $(-1,0,1),(0,-2,3),(1,-3,7)$.
$\mathrm{b}(6 \mathrm{pts})$. The line passing through the point $(-1,0,1)$ and parallel to the line $x=4 t-1 \quad y=$ $2-t \quad z=3+t$.
$3(14 \mathrm{pts})$. Find the intersection point (x, y, z) or show that it does not exist.
a. The intersection point of the line $x=4 t-1 \quad y=2-t \quad z=3+t$ and the plane $x+3 y=8+z$.
b. The intersection point of the lines

$$
\begin{array}{lll}
x=-3-2 t & y=7+t & z=-7-3 t \\
x=-5+4 s & y=8-2 s & z=-2+2 s
\end{array}
$$

$4(12 \mathrm{pts})$. Sketch the surface in (x, y, z)-space given by each equation. Label your axes x, y, z and use arrows to indicate the positive direction along each. Label your answers so I can tell which is which.
a. $x^{2}=y$
b. $x^{2}-y^{2}=z^{2}$
$5(13 \mathrm{pts})$. Find parametric equations of the line tangent to the curve given by

$$
x=t \sin (\pi t) \quad y=\ln (t+1) \quad z=\frac{t}{t+1}
$$

at the point $\left(0, \ln 2, \frac{1}{2}\right)$.
$6(8 \mathrm{pts})$. Evaluate the indefinite integral $\int\left(\csc ^{2} t \mathbf{i}+(t-1)(3 t+1) \mathbf{j}+\frac{e^{t}}{e^{t}+2} \mathbf{k}\right) d t$.
7 (8 pts). Find the center and radius of the sphere $x^{2}+y^{2}+z^{2}-4 x+8 z=-4$.

8(6 pts). Find the graph of given vector-valued function.
a. $\langle 2-3 t, 2 t+1,4 t\rangle$
b. $\langle\sin (10 t), \cos (10 t), t\rangle$
c. $\left\langle 2-t^{2}, t, t^{2}-1\right\rangle$
d. $\left\langle\sin t, \cos t, \frac{1}{2} \sin t-\frac{3}{4} \cos t\right\rangle$
e. $\langle\sqrt{t} \sin t, \sqrt{t} \cos t, \sqrt{t}\rangle$
f. $\langle\sin t, \cos t, \sin (4 t)\rangle$

1.

5.

8.
$1 \mathrm{a}(2 \mathrm{pts})$.(Source: $12 \cdot 2 \cdot 6,19-22)\langle 1,-2,2\rangle-2\langle 2,-3,6\rangle=\langle 1,-2,2\rangle-\langle 4,-6,12\rangle=\langle-3,4,-10\rangle$.
$1 \mathrm{~b}(3 \mathrm{pts})$. (Source: $12 \cdot 2 \cdot 6,19-22) \quad|-5 \mathbf{f}|=|-5||\mathbf{f}|=5 \sqrt{1^{2}+(-2)^{2}+2^{2}}=5 \sqrt{9}=15$.
Alternate solution: $|-5 \mathbf{f}|=|\langle 5,-10,10\rangle|=\sqrt{5^{2}+(-10)^{2}+10^{2}}=\sqrt{225}=15$.
$1 \mathrm{c}(9 \mathrm{pts})$.(Source: 12.3.17-18) If we call the angle in question θ, then $\mathbf{f} \cdot \mathbf{g}=|\mathbf{f}||\mathbf{g}| \cos \theta$. Calculate the dot product and the two magnitudes:

$$
\mathbf{f} \cdot \mathbf{g}=1 \cdot 2+(-2)(-3)+2 \cdot 6=20, \quad|\mathbf{g}|=\sqrt{2^{2}+(-3)^{2}+6^{2}}=7
$$

and $|\mathbf{f}|=3$, as found in b . Therefore $\cos \theta=20 /(3 \cdot 7)$, and $\theta=\cos ^{-1}\left(\frac{20}{21}\right)$.
$1 \mathrm{~d}(4 \mathrm{pts})$.(Source: $12 \cdot 2 \cdot 33-35) \quad$ Normalize \mathbf{f} to obtain $\frac{1}{|\mathbf{f}|} \mathbf{f}=\frac{1}{3}\langle 1,-2,2\rangle$, or $\left\langle\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right\rangle$.
$1 \mathrm{e}(13 \mathrm{pts})$.(Source: 12.4.1-7) $\quad \mathbf{f}$ and \mathbf{g} are both orthogonal to their cross product:

$$
\begin{aligned}
\mathbf{f} \times \mathbf{g}=\langle 1,-2,2\rangle \times\langle 2,-3,6\rangle & =\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -2 & 2 \\
2 & -3 & 6
\end{array}\right| \\
& =\mathbf{i}\left|\begin{array}{ll}
-2 & 2 \\
-3 & 6
\end{array}\right|-\mathbf{j}\left|\begin{array}{ll}
1 & 2 \\
2 & 6
\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}
1 & -2 \\
2 & -3
\end{array}\right| \\
& =((-2) 6-(-3) 2) \mathbf{i}-\text { etc. } \\
& =-6 \mathbf{i}-2 \mathbf{j}+1 \mathbf{k} .
\end{aligned}
$$

$1 \mathrm{f}(6 \mathrm{pts})$.(Source: $12.3 .39-44)$ The projection is

$$
\left(\frac{\mathbf{g} \cdot \mathbf{f}}{\mathbf{g} \cdot \mathbf{f}}\right) \mathbf{f}=\frac{20}{9}\langle 1,-2,2\rangle, \text { or }\left\langle\frac{20}{9},-\frac{40}{9}, \frac{40}{9}\right\rangle .
$$

$2 \mathrm{a}(7 \mathrm{pts})$.(Source: $12.5 .31-34)$ The vectors $\langle-1,0,1\rangle-\langle 0,-2,3\rangle=\langle 1,-2,2\rangle$ and $\langle-1,0,1\rangle-$ $\langle 1,-3,7\rangle=\langle 2,-3,6\rangle$ must lie in the plane, so their cross product (found in 1) is orthogonal to the plane. See 7 p. 827. The plane is given by the equation $-6(x+1)-2 y 1(z-1)=0$, or $-6 x-2 y+z=7$.
2 b (6 pts).(Source: 12.5 .4) See 2 p. 824. The given line is parallel to the vector $\langle 4,-1,1\rangle$, so the line in question is givein parametrically by $x=4 t-1 \quad y=-t \quad z=1+t$, in vector form by $\langle-1,0,1\rangle+t\langle 4,-1,1\rangle$, and in symmetric form by

$$
\frac{x+1}{4}=-y=z-1 .
$$

Any of these three forms is sufficient for full credit.
$3 \mathrm{a}(5 \mathrm{pts})$.(Source: $12.5 \cdot 45-47$) Substitute $x=4 t-1, y=2-t, z=3+t$ into the equation of the plane to obtain $4 t-1+3(2-t)=8+3+t$, or $t+5=11+t$. This equation has no solution, so the line and plane do not intersect.
$3 \mathrm{~b}(9 \mathrm{pts})$.(Source: $12 \cdot 5.19-20)$ Set the coordinates equal and solve for s and t :

$$
\begin{align*}
-3-2 t & =-5+4 s \\
7+t & =8-2 s \tag{1}\\
-7-3 t & =-2+2 s
\end{aligned} \quad \Rightarrow \quad \begin{aligned}
& =-t \\
-7 & =1 \\
2 s+t & =2 \\
&
\end{align*}
$$

The 1st and 2 nd equations of (1) are equivalent: any s and t that satisfies one of these equations satisfies both. From the second, we learn that $t=1-2 s$. Substitute this into the third to obtain

$$
2 s+3(1-2 s)=-5 \quad \Longrightarrow \quad-4 s=-8 \quad \Longrightarrow \quad s=2 \quad \Longrightarrow \quad t=1-2 \cdot 2=-3 .
$$

Substituting either of these into the equations of its corresponding line gives the point $(x, y, z)=(3,4,2)$.
$4 \mathrm{a}(4 \mathrm{pts})$.(Source: $12.6 \cdot 5-6) \quad y=x^{2}$ is a cylinder obtained by taking the parabola $y=x^{2}$ in the $x y$-plane and dragging backwards and forwards in the z-direction.

Here's a nice drawing by Mathematica. The positive z, x, and y directions in this figure are up, down-and-left, and (slightly) down-and-right. There's an interactive graph at https://www.desmos.com/3d/81009b1adc

4 b (8 pts).(Source: $12 \cdot 6 \cdot 13,18$) The graph of $x^{2}=y^{2}+z^{2}$ is a cone. Cross sections at constant x-values are circles centered at $(x, 0,0)$, so the surface is symmetric about the x-axis.

Here it is in Mathematica. The positive z, x, and y directions in this figure are up, down-and-left, and down-andright. See the interactive graph at
https://www.desmos.com/3d/907f6f5a3a

$5(13 \mathrm{pts})$.(Source: $13 \cdot 2 \cdot 23-26)$ To find an equation of the line, we need a point on the line and a parallel vector. Set $\mathbf{r}=\left\langle t \sin (\pi t), \ln (t+1), \frac{t}{t+1}\right\rangle$, which equals $\left\langle 0, \ln 2, \frac{1}{2}\right\rangle$ at $t=1$. For the parallel vector, use $\frac{d \mathbf{r}}{d t}$ at $t=1$.
By the product, chain, and quotient rules, $\frac{d \mathbf{r}}{d t}=\left\langle\sin (\pi t)+\pi t \cos (\pi t), \frac{1}{t+1}, \frac{1}{(t+1)^{2}}\right\rangle$. When $t=$ $1, \frac{d \mathbf{r}}{d t}=\left\langle-\pi, \frac{1}{2}, \frac{1}{4}\right\rangle$. Therefore, the tangent line is parametrized by $\left\langle 0, \ln 2, \frac{1}{2}\right\rangle+t\left\langle-\pi, \frac{1}{2}, \frac{1}{4}\right\rangle$, or, if you prefer,

$$
x=-\pi t, \quad y=\ln 2+\frac{1}{2} t, \quad z=\frac{1}{2}+\frac{1}{4} t .
$$

$6(8 \mathrm{pts})$.(Source: $13.3 .35-40) \quad \int \csc ^{2} t d t=-\cot t+C_{1}$. To calculate the second integral, integration by parts is unnecessary. Expand the polynomial and integrate:
$\int(t-1)(3 t+1) d t=\int\left(3 t^{2}-2 t-1\right) d t=t^{3}-t^{2}-t+C_{2}$.
If we substitute $u=e^{t}+2$, then $\int \frac{e^{t}}{e^{t}+2}=\int \frac{d u}{u}=\ln |u|+C_{3}=\ln \left(e^{t}+2\right)+C_{3}$.
Therefore, the indefinite integral is $-(\cot t) \mathbf{i}+\left(t^{3}-t^{2}-t\right) \mathbf{j}+\ln \left(e^{t}+2\right) \mathbf{k}+\mathbf{C}$ (where \mathbf{C} is a constant (vector) of integration.

7 (8 pts).(Source: $12 \cdot 1 \cdot 17-20$) Complete the square:

$$
\begin{aligned}
x^{2}-4 x+4+y^{2}+z^{2}+8 z+16 & =-4+4+16 \\
(x-2)^{2}+y^{2}+(z+4)^{2} & =16
\end{aligned}
$$

The center is $(2,0,-4)$, and the radius is $\sqrt{16}=4$.

8(6 pts).(Source: 13.1.21-26) a5, b6, c2, d1, e7, f3.

