MATH 221-01 (Kunkle), Exam 2
100 pts, 75 minutes

Name:
Feb 28, 2023

No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Supporting work will be required on every problem worth more than 2 points unless instructions say otherwise.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.
$1(12 \mathrm{pts})$. Choose two of the three limits below, and then either evaluate the limit or explain why it does not exist. Clearly indicate which two problems you're solving.
a. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-4 y^{2}}{x^{2}+2 y^{2}}$
b. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-9 y^{4}}{x^{2}+3 y^{2}}$
c. $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}$
$2(17 \mathrm{pts})$. Solve one of the following problems. Clearly indicate which one you're solving.
a. The function $\frac{1}{2} x^{2}+\frac{1}{2} y^{2}-z$ has a minimum but not a maximum on the intersection of the surfaces $x+z=2, x+y=5$. Find that minimum and the point where it occurs. b. The function $x-y-z$ attains a maximum but not a minimum on the surface $z=x^{2}+y^{2}$. Find that maximum and the point where it occurs.
$3(21 \mathrm{pts})$. Find the points in the $x y$-plane where $g(x, y)=x^{2}+y^{3}-2 x y$ has a local max, a local min, or a saddle point (and which occurs at which point).
$4(11 \mathrm{pts})$. Find $h_{x}, h_{y}, h_{x x}, h_{x y}$, and $h_{y y}$ if $h(x, y)=\left(x^{2}+y^{2}\right) e^{-x}$.
5. Suppose $p(2,-1)=5$ and $p_{x}(2,-1)=4$ and $p_{y}(2,-1)=3$.
$\mathrm{a}(6 \mathrm{pts})$. Find the equation of the plane tangent to the graph of $p(x, y)$ at $(x, y)=(2,-1)$.
$\mathrm{b}(3 \mathrm{pts})$. Use linear approximation to estimate $p(2.1,-0.99)$.
$\mathrm{c}(11 \mathrm{pts})$. If $x=\frac{t+3}{t+1}$ and $y=\cos (\pi t)-\sin (\pi t)$, find $\frac{d p}{d t}$ at $t=1$.
6. Let $w(x, y, z)=z y+z^{3}+6 x$.
$\mathrm{a}(11 \mathrm{pts})$. Find the equation of the plane tangent to the surface $w(x, y, z)=8$ at the point (3, -9, 2).
$\mathrm{b}(4 \mathrm{pts})$. Find the derivative of $w$ in the direction $\left\langle\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right\rangle$ at $(3,-9,2)$.
$\mathrm{c}(4 \mathrm{pts})$. In which (unit vector) direction does $w$ have the greatest directional derivative at $(3,-9,2)$ ? What is the value of the derivative in that direction?
$1 \mathrm{a}(6 \mathrm{pts})$.(Source: 14.2 .9$) \quad$ Along the path $y=0, \frac{x^{4}-4 y^{2}}{x^{2}+2 y^{2}}=\frac{x^{4}}{x^{2}}=x^{2} \rightarrow 0$ as $(x, y) \rightarrow(0,0)$. But along the path $x=0, \frac{x^{4}-4 y^{2}}{x^{2}+2 y^{2}}=\frac{-4 y^{2}}{2 y^{2}}=-2 \rightarrow-2$. Since these two limits disagree, $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-4 y^{2}}{x^{2}+2 y^{2}}$ does not exist.

1 b (6 pts).(Source: 14.2 .14 ) The top is a difference of squares, so we can take the limit after canceling the common factor:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{4}-9 y^{4}}{x^{2}+3 y^{2}}=\lim _{(x, y) \rightarrow(0,0)} \frac{\left(x^{2}-3 y^{2}\right)\left(x^{2}+3 y^{2}\right)}{x^{2}+3 y^{2}}=\lim _{(x, y) \rightarrow(0,0)}\left(x^{2}-3 y^{2}\right)=0
$$

$1 \mathrm{c}(6 \mathrm{pts})$.(Source: 14.2.16) Observe that $0 \leq x^{2} \leq x^{2}+y^{2}$ for all $x$ and $y$. Then divide all three sides by $x^{2}+y^{2}$ and multiply by $y^{2}$ to obtain

$$
0 \leq \frac{x^{2} y^{2}}{x^{2}+y^{2}} \leq y^{2}
$$

Since 0 and $y^{2}$ both $\rightarrow 0$ as $(x, y) \rightarrow(0,0)$, the squeeze theorem implies $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y^{2}}{x^{2}+y^{2}}$ must also equal 0 .
$2 \mathrm{a}(17 \mathrm{pts})$.(Source: 14.8 .17$) \quad f(x, y, z)=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}-z$ can attain its a minimum only at a point on $g(x, y, z)=x+z=2, h(x, y, z)=x+y=5$ where the triple product $\nabla f \cdot(\nabla g \times \nabla h)=0$ :

$$
\left|\begin{array}{ccc}
x & y & -1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right|=x\left|\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right|-y\left|\begin{array}{cc}
1 & 1 \\
1 & 0
\end{array}\right|+1\left|\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right|=-x+y-1=0
$$

The minimum must occur at a solution to the system

$$
\begin{aligned}
-x+y & =1 \\
x+y & =5 \\
x+z & =2
\end{aligned} \quad \Longrightarrow \quad \begin{aligned}
& x=2 \\
& y=3 \\
& z=0
\end{aligned}
$$

Since this system has only one solution, the minimum of $f$ must occur at the point $(2,3,0)$, where $f=\frac{1}{2} \cdot 4+\frac{1}{2} \cdot 9-0=\frac{13}{2}$.

2b.(Source: 14.8.7) $f(x, y, z)=x-y-z$ can attain its maximum only at a point on $g(x, y, z)=x^{2}+y^{2}-z=0$ where $\nabla f \times \nabla g=\mathbf{0}$ :
$\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & -1 \\ 2 x & 2 y & -1\end{array}\right|=\mathbf{i}\left|\begin{array}{cc}-1 & -1 \\ 2 y & -1\end{array}\right|-\mathbf{j}\left|\begin{array}{cc}1 & -1 \\ 2 x & -1\end{array}\right|+\mathbf{k}\left|\begin{array}{cc}1 & -1 \\ 2 x & 2 y\end{array}\right|=\langle 1+2 y, 1-2 x, 2 y+2 x\rangle=\mathbf{0}$

The minimum must occur at a solution to the system

$$
\left.\begin{array}{rlr}
1+2 y & =0 \\
1-2 x & =0 \\
2 y+2 x & =0 \\
x^{2}+y^{2} & =z &
\end{array} \quad \begin{array}{r}
x=\frac{1}{2} \\
y
\end{array} \quad \begin{array}{r}
2 \\
z
\end{array}\right) \frac{1}{2}
$$

Since this system has only one solution, the maximum of $f$ must occur at the point $\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)$, where $f=\frac{1}{2}-\left(-\frac{1}{2}\right)-\frac{1}{2}=\frac{1}{2}$.

3 (21 pts).(Source: 14.7.9) Search for critical points:

$$
\begin{aligned}
& g_{x}(x, y)=2 x-2 y=0 \Rightarrow y=x \\
& g_{y}(x, y)=3 y^{2}-2 x=0 \Rightarrow 3 x^{2}-2 x=0
\end{aligned}
$$

Factoring $0=3 x^{2}-2 x=x(3 x-2)$ yields $x=0$ and $x=\frac{2}{3}$. Since $y=x$, the accompanying $y$-values are 0 and $\frac{2}{3}$
Now use the Second Derivative Test at the critical points.

$$
D=\left|\begin{array}{ll}
g_{x x} & g_{x y} \\
g_{x y} & g_{y y}
\end{array}\right|=\left|\begin{array}{cc}
2 & -2 \\
-2 & 6 y
\end{array}\right|=4\left|\begin{array}{cc}
1 & -1 \\
-1 & 3 y
\end{array}\right|=4(3 y-1)
$$

| critical point | $D$ | $g_{x x}$ | conclusion |
| :---: | :---: | :---: | :---: |
| $(0,0)$ | -4 | irrelevant | saddle point |
| $\left(\frac{2}{3}, \frac{2}{3}\right)$ | 4 | 2 | local minimum |

4(11 pts).(Source: 14.3.17,53-58)

$$
\begin{aligned}
h & =\left(x^{2}+y^{2}\right) e^{-x} \\
h_{x} & =2 x e^{-x}+\left(x^{2}+y^{2}\right) e^{-x}(-1)=\left(2 x-x^{2}-y^{2}\right) e^{-x} \\
h_{y} & =2 y e^{-x} \\
h_{x x} & =(2-2 x) e^{-x}+\left(2 x-x^{2}-y^{2}\right) e^{-x}(-1)=\left(2-4 x+x^{2}+y^{2}\right) e^{-x} \\
h_{x y} & =-2 y e^{-x} \\
h_{y y} & =2 e^{-x}
\end{aligned}
$$

$5 \mathrm{a}(6 \mathrm{pts})$.(Source: 14.4.1-6) The linearization of $p$ at $(2,-1)$ is the function $L(x, y)=$ $p(2,-1)+p_{x}(2,-1)(x-2)+p_{y}(2,-1)(y+1)$, and the equation of the tangent plane is $z=$ this function, or $z=5+4(x-2)+3(y+1)$.
$5 \mathrm{~b}(3 \mathrm{pts})$.(Source: 14.4 .19$)$ Linear approximation says that $p(x, y) \approx L(x, y)$, for $(x, y)$ near $(2,-1)$. Therefore $p(2.1,-0.99) \approx 5+4(2.1-2)+3(-0.99+1)=5.43$.
$5 \mathrm{c}(11 \mathrm{pts})$. (Source: $14.5 .13-14,14.5 .2) \quad \frac{d x}{d t}=\frac{(t+1)-(t+3)}{(t+1)^{2}}=\frac{-2}{(t+1)^{2}}$, and
$\frac{d y}{d t}=-\pi \sin (\pi t)-\pi \cos (\pi t)$. At $t=1,(x, y)=(2,-1), \frac{d x}{d t}=-\frac{1}{2}$, and $\frac{d y}{d t}=\pi$. Therefore, by the chain rule,

$$
\frac{d p}{d t}=p_{x}(2,-1) x_{t}+p_{y}(2,-1) y_{t}=4 \cdot\left(\frac{-1}{2}\right)+3 \pi=-2+3 \pi
$$

$6 \mathrm{a}(11 \mathrm{pts}) \cdot$.(Source: 14.6 .44$) \quad \nabla w=\left\langle w_{x}, w_{y}, w_{z}\right\rangle=\left\langle 6, z, y+3 z^{2}\right\rangle$. At $(3,-9,2), \nabla w=\langle 6,2,3\rangle$. The tangent plane passes through the point $(3,-9,2)$ and is perpendicular to $\langle 6,2,3\rangle$, so it's given by the equation

$$
6(x-3)+2(y+9)+3(z-2)=0
$$

or, $6 x+2 y+3 z=6$.
$6 \mathrm{~b}(4 \mathrm{pts})$.(Source: 14.6 .15$)$ The derivative of $w$ in the direction $\left\langle\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right\rangle$ at $(3,-9,2)$ is

$$
\nabla w(3,-9,2) \cdot\left\langle\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right\rangle=\langle 6,2,3\rangle \cdot\left\langle\frac{1}{3},-\frac{2}{3}, \frac{2}{3}\right\rangle=2-\frac{4}{3}+2=\frac{8}{3}
$$

$6 \mathrm{c}(4 \mathrm{pts})$.(Source: $14.6 \cdot 24-26) \quad|\nabla w|=\sqrt{6^{2}+2^{2}+3^{2}}=\sqrt{49}=7$. The derivative of $w$ is greatest in the direction $\frac{1}{|\nabla w|} \nabla w=\frac{1}{7}\langle 6,2,3\rangle$. In the direction, the derivative is $|\nabla w|=7$.

