More problems for section 7.7 of *Calculus*. *Early Transcendentals* by James Stewart, 8e.

$$|E_T| \le \frac{K(b-a)^3}{12n^2}$$
 and $|E_S| \le \frac{L(b-a)^5}{180n^4}$

where $|f''(x)| \le K$ and $|f^{(4)}| \le L$ on the interval [a, b].

Example: I plan to approximate $\int_{-1}^{2} f(x) dx$ using the Trapezoidal Rule, and $|f''(x)| \le 5$ on [-1, 2]. a. If I use n = 8 subintervals, how large might the absolute error be?

b. If I need the absolute error to be less than 10^{-6} , how large an n must I use? Solution:

a. Using K = 5 in the inequality above gives $|E_T| \le \frac{5(2-(-1))^3}{12\cdot 8^2} = \frac{5\cdot 3^3}{12\cdot 8^2} \le 0.176$. b. To ensure $|E_T| \le 10^{-6}$, chose *n* so as to make $\frac{K(b-a)^3}{12n^2} = \frac{5\cdot 3^3}{12\cdot n^2} \le 10^{-6}$. Solving, $n^2 \ge \frac{5\cdot 3^2}{4} 10^6$ and so $n \geq \frac{3}{2}10^3\sqrt{5} \approx 3354.1$. Since n must be an integer, $n \geq 3355$.

In the exercises below, the same four questions appear with various wording. State each of your answers as an inequality (in the right direction).

- 1. Suppose $|f^{(2)}(x)| < 48$ and $|f^{(4)}(x)| < 120$ on [1,3].
- a. If we approximate $\int_1^3 f(x) dx$ using TRAP with n = 10, how large could the absolute error be? b. If we want $|E_T|$ to be less than 10^{-4} , how large must n be?
- c. Bound the absolute error that could occur when we approximate $\int_{1}^{3} f(x) dx$ using SIMP and n = 10. d. What's the minimum n that will guarantee $|E_S|$ to be less than 10^{-4} ?
- 2. Suppose $|f^{(2)}(x)| \leq 3$ and $|f^{(4)}(x)| \leq 16$ on [10, 20].
- a. If we approximate $\int_{10}^{20} f(x) dx$ using TRAP with n = 20, find the largest possible $|E_T|$.
- b. Find an upper bound for the error that could occur if we approximate $\int_{10}^{20} f(x) dx$ using SIMP and n = 20.
- c. For what range of n can we be certain that $|E_T| < 10^{-8}$?
- d. What values of n will ensure $|E_S|$ is no more than 10^{-8} ?
- 3. Suppose $-20 \le f^{(2)}(x) \le 0$ and $0 < f^{(4)}(x) < 10$ on [2, 7].
- a. What can be said of the absolute error that occurs when $\int_{2}^{7} f(x) dx$ is approximated by SIMP and n = 100.
- b. Find the maximum possible absolute error when TRAP is used to estimate $\int_2^7 f(x) dx$ with n = 100.
- c. If we require $|E_S|$ to be at most 10^{-12} , what's the smallest acceptable value of n?
- d. For what range of n do we know that $|E_T|$ is below 10^{-12} ?

4. Suppose that $-6 < f^{(2)}(x) < 5$ and $-100 < f^{(4)}(x) < 25$ for all $0 \le x \le 2\pi$.

a. When TRAP is used to approximate $\int_0^{2\pi} f(x) dx$ with n = 40, how far from the true integral could the estimate be?

b. If we approximate $\int_0^{2\pi} f(x) dx$ using SIMP and 40 subintervals, how large could the resulting error be? c. If the trapezoidal rule approximation must be within 10^{-8} of the actual integral, what number of subin-

tervals should one use?

d. If we want $|E_S| < 10^{-8}$, how large must n be?

Answers

Answers 1a. $|E_T| \le \frac{32}{100}$ 1b. $n \ge 400\sqrt{2}$ 1c. $|E_S| \le \frac{64}{3}10^{-4}$ 1d. $n \ge 20\sqrt[4]{\frac{4}{3}}$ 2a. $|E_T| \le \frac{3\cdot10^3}{12\cdot20^2}$ 2b. $|E_S| \le \frac{16\cdot10^5}{180\cdot20^4}$ 2c. $n \ge \sqrt{\frac{3\cdot10^3}{12}}10^4$ 2d. $n \ge \sqrt[4]{\frac{16\cdot10^5}{180}}10^2$ 3a. $|E_S| \le \frac{10\cdot5^5}{180\cdot100^4}$ 3b. $|E_T| \le \frac{20\cdot5^3}{12\cdot100^2}$ 3c. $n \ge \sqrt[4]{\frac{10\cdot5^5}{180}}10^3$ 3d. $n \ge \sqrt{\frac{20\cdot5^3}{12}}10^6$ 4a. $|E_T| \le \frac{100(2\pi)^3}{12\cdot40^2}$ 4b. $|E_S| \le \frac{6(2\pi)^5}{180\cdot40^4}$ 4c. $n \ge \sqrt{\frac{100(2\pi)^3}{12}}10^4$ 4d. $n \ge \sqrt[4]{\frac{6(2\pi)^5}{180}}10^2$