MATH 220-02 (Kunkle), Quiz 8
10 pts, 10 minutes

Name:
Nov 14, 2023

1. Find the following. You are not required to express y as a function of x in either part. a (8 pts). The general solution to the differential equation $y \frac{d y}{d x}=x\left(2-y^{2}\right) e^{x}$.
$\mathrm{b}(2 \mathrm{pts})$. The particular solution to the differential equation in a that satisfies $y=2$ when $x=0$.

1a.(Source: 9.3.8) Separate variables and integrate:

$$
\int \frac{y}{2-y^{2}} d y=\int x e^{x} d x
$$

On the left, substitute $w=2-y^{2}, d w=-2 y d y$:

$$
\int \frac{y}{2-y^{2}} d y=-\frac{1}{2} \int \frac{1}{w} d w=-\frac{1}{2} \ln |w|+B=-\frac{1}{2} \ln \left|2-y^{2}\right|+B
$$

On the right, use parts:

$$
\begin{array}{rlrl}
u & =x & d v & =e^{x} d x \\
d u & =d x & v & =e^{x}
\end{array}
$$

and the integral becomes

$$
\begin{aligned}
\int x e^{x} d x & =\int u d v=u v-\int v d u \\
& =x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C
\end{aligned}
$$

By setting the two integrals equal and combining the constants, we obtain the general solution

$$
-\frac{1}{2} \ln \left|2-y^{2}\right|=x e^{x}-e^{x}+C
$$

1b.(Source: 9.3.15) At $x=0, y=2$:

$$
-\frac{1}{2} \ln |-2|=-1+C \quad \Longrightarrow \quad C=1-\frac{1}{2} \ln 2
$$

so the particular solution is

$$
-\frac{1}{2} \ln \left|2-y^{2}\right|=x e^{x}-e^{x}+1-\frac{1}{2} \ln 2 .
$$

