MATH 220-02 (Kunkle), Quiz 7
$10 \mathrm{pts}, 10$ minutes

Name:
Nov 7, 2023

1 (10 pts). Find power series representations of the following functions:
a. $\quad f(x)=\frac{1}{(1-2 x)^{3}}$
b. $g(x)=x \tan ^{-1}\left(x^{2}\right)$

1. Both of these series follow from the geometric series:

$$
\begin{equation*}
(1-x)^{-1}=\sum_{n=0}^{\infty} x^{n} \tag{1}
\end{equation*}
$$

a.(Source: 11.9.16) Differentiate this twice and obtain

$$
2(1-x)^{-3}=\sum_{n=2}^{\infty} n(n-1) x^{n-2}
$$

Divide by 2 , and replace x with $2 x$, and the answer to part a . is

$$
(1-2 x)^{-3}=\sum_{n=2}^{\infty} n(n-1) 2^{n-3} x^{n-2}
$$

b.(Source: 11.9.22) You can remember the MacLaurin series for $\arctan x$ by repeating the steps we saw in class. In (1), replace x with $-x^{2}$ and integrate the result:

$$
\tan ^{-1} x=\int \frac{1}{1+x^{2}} d x=\int \sum_{n=0}^{\infty}(-1)^{n} x^{2 n} d x=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{2 n+1}
$$

The constant of integration is zero, as seen in class. So, the answer to part b. is

$$
x \sum_{n=0}^{\infty}(-1)^{n} \frac{\left(x^{2}\right)^{2 n+1}}{2 n+1}=x \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{2 n+1}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+3}}{2 n+1}
$$

