MATH 220-02 (Kunkle), Quiz 1
10 pts, 10 minutes

Name:
Aug 29, 2023

1 (10 pts). Let R denote the region in the first quadrant bounded by the curves $x=0$, $y=1, y=2$, and $y=1 / x$.
a. Express the volume generated when R is rotated about the line $x=0$ as a definite integral, but do not integrate.
b. Express the volume generated when R is rotated about the line $y=3$ as a definite integral, but do not integrate.

Solution: (Source: Stewart 8e, 6.2.2, 6.3.9) You don't need a highly accurate graph of R to answer this question but you should know that $y=1$ and $y=2$ are horizontal lines and that $x=0$ is the y-axis, and that $y=1 / x$ is a decreasing function of x. R must look something like this (after slicing horizontally):

Rotating each such rectangle about a vertical line (as in part a.) results in a disc. Rotating about a horizontal line (part b.) makes a shell:

So the volumes are:

$$
\text { a. } \quad V=\int d V=\int_{1}^{2} \pi \frac{1}{y^{2}} d y \quad \text { b. } \quad V=\int d V=\int_{1}^{2} 2 \pi(3-y)\left(\frac{1}{y}\right) d y
$$

(done)
Comment: The solution is more difficult if you slice the region vertically, since the y value at the top of a rectangle is either 2 or $1 / x$, depending on whether x is less than or greater than $1 / 2$. Unsimplifed answers are
a. $\quad V=\int_{0}^{1 / 2} 2 \pi x(2-1) d x+\int_{1 / 2}^{1} 2 \pi x\left(x^{-1}-1\right) d x$
b. $\quad V=\int_{0}^{1 / 2} \pi\left((3-1)^{2}-(3-2)^{2}\right) d x+\int_{1 / 2}^{1} \pi\left((3-1)^{2}-\left(3-x^{-1}\right)^{2}\right) d x$

