MATH 220-02 (Kunkle), Exam 3
100 pts, 75 minutes

Name:
Oct 31, 2023

No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points. You are expected to know the values of all trigonometric functions at multiples of $\pi / 4$ and of $\pi / 6$.
1 (6 pts). Find the area swept out by the curve $y=\ln x, 1 \leq x \leq e$ as it is rotated about the x-axis. Express your answer as a definite integral, but do not evaluate.
2. The series $s=\sum_{n=2}^{\infty} \frac{(-1)^{n+1}}{n \ln n}$ converges.
$\mathrm{a}(4 \mathrm{pts})$. If we approximate s with the partial sum $s_{100}=\sum_{n=2}^{100} \frac{(-1)^{n+1}}{n \ln n}$, how large might the absolute error be? That is, find a number B so that $\left|s-s_{100}\right| \leq B$.
$\mathrm{b}(4 \mathrm{pts})$. Is s_{100} an overestimate or an underestimate of s ? Briefly explain.
3 (18 pts). Evaluate the limit, if it exists. Show your work.
a. $\lim _{n \rightarrow \infty} \ln \left(\frac{n+1}{n}\right)$
b. $\lim _{n \rightarrow \infty} \frac{\sin \left(n^{2}\right)}{n^{2}}$
c. $\lim _{n \rightarrow \infty} \frac{3^{n}}{3^{n}+2^{n}}$
$4(30 \mathrm{pts})$. Determine whether the series converges or diverges. Justify your conclusion.
a. $\sum_{n=1}^{\infty}\left(\frac{1-2 n}{3 n-2}\right)$
b. $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
c. $\sum_{n=1}^{\infty} \frac{e^{-1 / n}}{n}$
$5(18 \mathrm{pts})$. Determine whether the series converges absolutely, converges conditionally, or diverges. Justify your conclusion.
a. $\sum_{n=1}^{\infty}\left(\frac{1-2 n}{3 n-2}\right)^{n}$
b. $\sum_{n=1}^{\infty}(-1)^{n+1}\left(\frac{n}{n^{2}-2}\right)$
$6 \mathrm{a}(8 \mathrm{pts})$. Find the radius of convergence of the power series: $\sum_{n=0}^{\infty} \frac{(x-1)^{n}}{n!}$
$6 \mathrm{~b}(7 \mathrm{pts})$. Find the interval of convergence of the power series: $\sum_{n=1}^{\infty}(x+1)^{n}$
$6 \mathrm{c}(5 \mathrm{pts})$. When it converges, what is the sum of the series in 6 b ?

1 (6 pts).(Source: $8.1 .9-20,8.2 .7-12,6.5 .1-8)$ Slice the curve into infinitesimal segments of length $d s$. Slope along this curve is $\frac{d y}{d x}=\frac{1}{x}$, so its length is

$$
d s=\sqrt{1+\frac{d y^{2}}{d x}} d x=\sqrt{1+x^{-2}} d x
$$

When the segment of curve at the point (x, y) is rotated about the x-axis, it generates a ribbon of radius y and area $d A=2 \pi y d s$. The total area is

$$
\int_{1}^{e} 2 \pi \ln x \sqrt{1+x^{-2}} d x
$$

2(Source: 11.5.more1a-f, part i,ii) . When its hypotheses are satisfied, the Alternating Series Test tells us that the sum of the series lies between any two consecutive partial sums. In this case, s is between s_{100} and $s_{101}=s_{100}+\frac{(-1)^{102}}{101 \ln (101)}$.
$\mathrm{a}(4 \mathrm{pts})$. The distance between s and s_{100} is therefore less or equal the distance from s_{100} to s_{101}. That is, $\left|s-s_{100}\right| \leq\left|\frac{(-1)^{102}}{101 \ln (101)}\right|=\frac{1}{101 \ln (101)}$.
$\mathrm{b}(4 \mathrm{pts}) \cdot \frac{(-1)^{102}}{101 \ln (101)}$ is positive, and so $s_{100}<s_{101)}$. Because s is between these, s must be greater than s_{100}. That is, s_{100} is an underestimate of s.
3a(4 pts).(Source: $11.1 .31,32,42) \quad$ By FLESK $5, \lim _{n \rightarrow \infty}\left(\frac{n+1}{n}\right)=\lim _{n \rightarrow \infty}\left(\frac{n}{n}\right)=1$, and since $\ln x$ is continuous, $\lim _{n \rightarrow \infty} \ln \left(\frac{n+1}{n}\right)=\ln \left(\lim _{n \rightarrow \infty} \frac{n+1}{n}\right)=\ln 1=0$.
$3 \mathrm{~b}(8 \mathrm{pts})$.(Source: 11.1.43)

$$
-1 \leq \sin \left(n^{2}\right) \leq 1 \quad \Longrightarrow \quad-\frac{1}{n^{2}} \leq \frac{\sin \left(n^{2}\right)}{n^{2}} \leq \frac{1}{n^{2}}
$$

Since $\lim _{n \rightarrow \infty}-\frac{1}{n^{2}}=\lim _{n \rightarrow \infty} \frac{1}{n^{2}}=0$, the Squeeze Theorem implies that $\lim _{n \rightarrow \infty} \frac{\sin \left(n^{2}\right)}{n^{2}}$ also equals 0 .
$3 \mathrm{c}(6 \mathrm{pts})$.(Source: 11.1 .30$)$ As it is written, this limit is of the indeterminate form $\frac{\infty}{\infty}$, but l'Hospital's Rule doesn't produce a simpler limit, so, instead, rewrite the sequence by dividing top and bottom by 3^{n} :

$$
\frac{3^{n}}{3^{n}+2^{n}}=\frac{1}{1+\frac{2^{n}}{3^{n}}}=\frac{1}{1+\left(\frac{2}{3}\right)^{n}}
$$

You could arrive at (\star) by factoring out the dominant term 3^{n} from numerator and denominator and canceling. By FLESK 1, the limit of this is $\frac{1}{1+0}=1$.
$4 \mathrm{a}(6 \mathrm{pts})$.(Source: $11.2 \cdot 33,36,11.1 .29) \quad$ By FLESK 5, $\lim _{n \rightarrow \infty}\left(\frac{1-2 n}{3 n-2}\right)=\lim _{n \rightarrow \infty}\left(\frac{-2 n}{3 n}\right)=\frac{-2}{3}$.
Since this limit is not zero, $\sum_{n=1}^{\infty}\left(\frac{1-2 n}{3 n-2}\right)$ diverges by the nth Term Test.

4 b (14 pts).(Source: 11.3.22, 11.4.40) Here are two solutions:
Solution one: The function $f(x)=\frac{\ln x}{x^{3}}$ is positive on $[2, \infty)$. To see if it's decreasing, examine its derivative:

$$
f^{\prime}(x)=\frac{x^{-1} x^{3}-3 x^{2} \ln x}{x^{6}}=\frac{x^{2}-3 x^{2} \ln x}{x^{6}}=\frac{1-3 \ln x}{x^{4}}
$$

x^{4} is positive as long as $x \neq 0$, and $1-3 \ln x$ must be <0 on some interval $[K, \infty)$, since its limit is $-\infty$. (In fact, $1-3 \ln x<0$ when $x>e^{1 / 3}$.) Therefore, integral test says that

$$
\sum_{n=1}^{\infty} f(n) \text { and } \int_{1}^{\infty} f(x) d x
$$

must both converge or both diverge.
Using integration by parts,

$$
\begin{array}{rlrl}
u & =\ln x & d v & =x^{-3} d x \\
d u & =x^{-1} d x & v & =-\frac{1}{2} x^{-2}
\end{array}
$$

the indefinite integral

$$
\begin{aligned}
\int \frac{\ln x}{x^{3}} d x & =u v-\int v d u \\
& =-\frac{1}{2} x^{-2} \ln x+\frac{1}{2} \int x^{-2} x^{-1} d x \\
& =-\frac{1}{2} x^{-2} \ln x+\frac{1}{2} \int x^{-3} d x=-\frac{1}{2} x^{-2} \ln x-\frac{1}{4} x^{-2}+C
\end{aligned}
$$

To evaluate the improper integral, rewrite it as a limit:

$$
\begin{aligned}
\lim _{\beta \rightarrow \infty} \int_{1}^{\beta} \frac{\ln x}{x^{3}} d x & =\left.\lim _{\beta \rightarrow \infty}\left(-\frac{1}{2} x^{-2} \ln x-\frac{1}{4} x^{-2}\right)\right|_{1} ^{\beta} \\
& =\lim _{\beta \rightarrow \infty}\left[\left(-\frac{1}{2} \beta^{-2} \ln \beta-\frac{1}{4} \beta^{-2}\right)-\left(-\frac{1}{4}\right)\right] \\
& =-\frac{1}{2} \lim _{\beta \rightarrow \infty}\left[\frac{\ln \beta}{\beta^{2}}\right]-\frac{1}{4} \cdot 0+\frac{1}{4}
\end{aligned}
$$

Can use l'Hôpital's Rule on the remaining $\frac{\infty}{\infty}$ limit to obtain

$$
\lim _{\beta \rightarrow \infty}\left[\frac{\beta^{-1}}{2 \beta}\right]=\lim _{\beta \rightarrow \infty}\left[\frac{1}{2 \beta^{2}}\right]=0
$$

Therefore the improper integral converges to $\frac{1}{4}$. By the Integral Test, the series also converges.

Solution two: As in an example seen in class Monday, we can try to limit-compare this series to $\sum_{n=1}^{\infty} \frac{1}{n^{5 / 2}}$ with the help of l'Hospital's Rule:

$$
\lim _{n \rightarrow \infty} \frac{\frac{\ln n}{n^{3}}}{\frac{1}{n^{5 / 2}}}=\lim _{n \rightarrow \infty} \frac{\ln n}{n^{1 / 2}}=" \frac{\infty}{\infty} \stackrel{H R}{\hookrightarrow} \lim _{n \rightarrow \infty} \frac{n^{-1}}{\frac{1}{2} n^{-1 / 2}}=\lim _{n \rightarrow \infty} \frac{1}{\frac{1}{2} n^{1 / 2}}=0
$$

Since the limit is zero, the Limit Comparison Test is inconclusive. But, we can now try the comparison test. Because $\frac{\frac{\ln n}{n^{3}}}{\frac{1}{n^{5 / 2}}} \rightarrow 0$, the numerator must be less than the denominator on some interval $[K, \infty)$:

$$
0<\frac{\ln n}{n^{3}} \leq \frac{1}{n^{5 / 2}}
$$

(See Limit Comparison Test, continued, review notes, page 45.) It is important to note that original series is positive, so that we can apply the Comparison Test. Since $\sum_{n=1}^{\infty} \frac{1}{n^{5 / 2}}$ is a convergent p-series $\left(p=\frac{5}{2}>1\right), \sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$ converges by the Comparison Test.
$4 \mathrm{c}(10 \mathrm{pts})$.(Source: 11.4 .28) Limit-compare with harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$:

$$
\lim _{n \rightarrow \infty} \frac{e^{-1 / n}}{n} \div \frac{1}{n}=\lim _{n \rightarrow \infty} e^{-1 / n}=e^{\lim _{n \rightarrow \infty}-1 / n}=e^{0}=1
$$

(using the continuity of e^{x}). Since this limit is positive and finite, the Limit Comparison Test says that $\sum_{n=1}^{\infty} \frac{e^{-1 / n}}{n}$ and the harmonic series must both converge or both diverge. Since the harmonic series diverges, so must $\sum_{n=1}^{\infty} \frac{e^{-1 / n}}{n}$.
$5 \mathrm{a}(7 \mathrm{pts})$.(Source: 11.6.32) Root Test:

$$
\lim _{n \rightarrow \infty}\left(\left|\frac{1-2 n}{3 n-2}\right|^{n}\right)^{1 / n}=\lim _{n \rightarrow \infty}\left|\frac{1-2 n}{3 n-2}\right|=\left|\lim _{n \rightarrow \infty}\left(\frac{1-2 n}{3 n-2}\right)\right|=\left|-\frac{2}{3}\right|=\frac{2}{3}
$$

(as seen in problem 4a). Since this limit is less than 1 , the series converges absolutely.
5 b (11 pts).(Source: 11.6.6) Test first for absolute convergence. The series

$$
\sum_{n=1}^{\infty}\left|(-1)^{n+1}\left(\frac{n}{n^{2}-2}\right)\right|=\sum_{n=1}^{\infty}\left(\frac{n}{n^{2}-2}\right)
$$

can be compared to the harmonic series because

$$
0 \leq \frac{1}{n}=\frac{n}{n^{2}} \leq \frac{n}{n^{2}-2}
$$

Since the harmonic series diverges, so does $\sum_{n=1}^{\infty} \frac{n}{n^{2}-2}$, and so the original series fails to converge absolutely.

Now check for conditional convergence. $b_{n}=\frac{n}{n^{2}-2}$ is positive for $n \geq 2$ and decreasing since its derivative

$$
\frac{1\left(n^{2}-2\right)-n \cdot 2 n}{\left(n^{2}-2\right)^{2}}=\frac{-n^{2}-2}{\left(n^{2}-2\right)^{2}}
$$

is always negative. Therefore, the Alternating Series Test tells us that the original series converges. Since it does not converge absolutely, it converges conditionally.

6a(8 pts).(Source: $11.8 \cdot 7,19$) At $x=1$ the power series is $1+0+0+\cdots$, which converges. (In fact, every power series converges at its center.) If $x \neq 1$, then we can take the limit

$$
\lim _{n \rightarrow \infty} \frac{\left|\frac{(x-1)^{n+1}}{(n+1)!}\right|}{\left|\frac{(x-1)^{n}}{n!}\right|}=\lim _{n \rightarrow \infty} \frac{|x-1|^{n+1}}{|x-1|^{n}} \cdot \frac{n!}{(n+1)!}=\lim _{n \rightarrow \infty} \frac{|x-1|}{(n+1)}=0
$$

and since this is less than 1 , the series converges absolutely. Because the power series converges for all x, its radius of convergence is ∞.

6 b (7 pts).(Source: 11.2 .58 , also 11.8.3-20) The series is geometric with $r=x+1$. It converges if and only if $-1<x+1<1$, so its interval of convergence is $(-2,0)$.
$6 \mathrm{c}(5 \mathrm{pts})$.(Source: 11.2.58) When it converges, the sum of the geometric series is

$$
\frac{\text { first term }}{1-r}=\frac{x+1}{1-(x+1)}=-\frac{x+1}{x}
$$

