MATH 220-02 (Kunkle), Exam 1
100 pts, 75 minutes
Name:
Sept 12, 2023
No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.
You are expected to know the values of all trigonometric functions at multiples of $\pi / 4$ and of $\pi / 6$.
You may use, without proof, any of these reduction formulas that are relevant.

$$
\begin{aligned}
& \int \sin ^{n} x d x=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} \int \sin ^{n-2} x d x \\
& \int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x \\
& \int \tan ^{n} x d x=\frac{1}{n-1} \tan ^{n-1} x-\int \tan ^{n-2} x d x \\
& \int \sec ^{n} x d x=\frac{1}{n-1} \sec ^{n-2} x \tan x+\frac{n-2}{n-1} \int \sec ^{n-2} x d x
\end{aligned}
$$

1 (10 pts). How much work is required to lift 60 lbs of coal from the bottom of a 200 -foot mine shaft with a (200-foot) cable weighing 20 lbs?
Express your answer as a definite integral, but do not evaluate.
$2(23 \mathrm{pts})$. Let R be the region in the $x y$-plane bounded by $y=\sin x$ and $y=\cos x$ between $x=0$ and $x=\frac{\pi}{4}$. Find the following. Work in the space provided and label your answers. Express your answers as definite integrals, but do not evaluate.
a. The area of R.
b. The volume of the solid whose base is R and whose cross-sections perpendicular to the x-axis are squares with one side in the $x y$-plane.
c. The volume swept out by R as it rotated about the y-axis.
d. The volume swept out by R as it rotated about the line $y=1$.
$3(7 \mathrm{pts})$. Find the average value of $\tan x$ on the interval $\left[0, \frac{\pi}{4}\right]$.
$4(12 \mathrm{pts})$. Express $\cos ^{6} x$ as a sum of sinusoidal functions. You are not required to integrate this sum.
$5(48 \mathrm{pts})$. Evaluate the indefinite integral.
a. $\int \sin ^{5} x \cos ^{3} x d x$
b. $\int \tan ^{2} x \sec ^{3} x d x$
c. $\int \sin (5 x) \cos (6 x) d x$
d. $\int x^{2} \sinh x d x$
$1(10 \mathrm{pts})$.(Source: 6.4 .15$)$ The weight-density of the cable is $\frac{20}{200} \mathrm{lb} / \mathrm{ft}=\frac{1}{10} \mathrm{lb} / \mathrm{ft}$. Let $d w$ be the work it takes to lift the coal and remaining cable $d y$ feet when the coal is at altitude y. At that moment, the remaining $200-y$ feet of cable weighs $\frac{1}{10}(200-y) \mathrm{lb}$, so

$$
d w=\left(\frac{1}{10}(200-y)+60\right) d y
$$

The total work is

$$
w=\int d w=\int_{0}^{200}\left(\frac{1}{10}(200-y)+60\right) d y
$$

(or $\left.\int_{0}^{200}\left(80-\frac{1}{10} y\right) d y\right)$.
$2(23 \mathrm{pts})$. To get a decent working sketch of R, remember that $y=\cos x$ is above $y=\sin x$ between $x=0$ and $x=\frac{\pi}{4}$. See sketch of R (sliced vertically) at the right. a.(Source: $6.1 .15,16$) The rectangle at position x has height $\cos x-\sin x$ and width $d x$, so the area of R equals $\int d A=\int_{0}^{\pi / 4}(\cos x-\sin x) d x$.

b.(Source: 6.2.58,6.2.more.1.c,f,h,...) Slice the solid with knife cuts perpendicular the the x-axis and let $d V$ be the volume of the slice at position x, shown at the right.
The dimensions of this slice are $(\cos x-\sin x) \times(\cos x-\sin x) \times d x$, so $V=\int d V=\int_{0}^{\pi / 4}(\cos x-\sin x)^{2} d x$.

c.(Source: $6.3 .6,7)$ When R is rotated about the y-axis, the result is a shell (below right) and

$$
V=\int d V=\int_{0}^{\pi / 4} 2 \pi x(\cos x-\sin x) d x
$$

d.(Source: 6.2.14) When R is rotated about $y=1$, the result is a washer (above left) and

$$
V=\int d V=\int_{0}^{\pi / 4} \pi\left((1-\sin x)^{2}-(1-\cos x)^{2}\right) d x
$$

3 (7 pts).(Source: $6.5 .1-8,7.2$. more.2b, 7.2 .23) The average value equals

$$
\frac{1}{\frac{\pi}{4}} \int_{0}^{\pi / 4} \tan x d x=\left.\frac{4}{\pi} \ln |\sec x|\right|_{0} ^{\pi / 4}=\frac{4}{\pi}\left(\ln \left|\sec \frac{\pi}{4}\right|-\ln |\sec 0|\right)=\frac{4}{\pi}(\ln \sqrt{2}-\ln 1)=\frac{4}{\pi} \ln \sqrt{2}
$$

$4(12 \mathrm{pts})$.(Source: Euler.9e) A sinusoidal function is a function of the form $A \sin (B x+C)+D$ or $A \cos (B x+C)+D$.
Use Euler's formula, and the 6 th row of Pascal's Triangle, $\begin{array}{llllllll}1 & 6 & 15 & 20 & 15 & 6 & 1 \text { : }\end{array}$

$$
\begin{aligned}
\cos ^{6} x=\left(\frac{e^{i x}+e^{-i x}}{2}\right)^{6} & =\frac{1}{64}\left(e^{i 6 x}+6 e^{i 4 x}+15 e^{i 2 x}+20+15 e^{-i 2 x}+6 e^{-i 4 x}+e^{-i 6 x}\right) \\
& =\frac{1}{32}\left(\frac{e^{i 6 x}+e^{-i 6 x}}{2}+6 \frac{e^{i 4 x}+e^{-i 4 x}}{2}+15 \frac{e^{i 2 x}+e^{-i 2 x}}{2}+10\right) \\
& =\frac{1}{32}(\cos 6 x+6 \cos 4 x+15 \cos 2 x+10)
\end{aligned}
$$

$5 \mathrm{a}(12 \mathrm{pts})$.(Source: $7.2 .2,3$) Since the exponents of sine and cosine are both odd, you can't use a reduction formula, but you can substitute either $u=\cos x$ or, more $\operatorname{simply}, u=\sin x$. Using this, $d u=\cos x d x$, and the integral becomes

$$
\begin{aligned}
\int \sin ^{5} x \cos ^{2} x \cos x d x & =\int u^{5}\left(1-u^{2}\right) d u=\int\left(u^{5}-u^{7}\right) d u \\
& =\frac{1}{6} u^{6}-\frac{1}{8} u^{8}+C=\frac{1}{6} \sin ^{6} x-\frac{1}{8} \sin ^{8} x+C
\end{aligned}
$$

If we had substituted $w=\cos x$ instead, then $d w=-\sin x d x$, and the integral is

$$
\begin{aligned}
\int \sin ^{4} x \cos ^{3} x \sin x d x & =\int\left(1-w^{2}\right)^{2} w^{3}(-d w)=-\int\left(1-2 w^{2}+w^{4}\right) w^{3} d w \\
& =-\int\left(w^{3}-2 w^{5}+w^{7}\right) d w=-\frac{1}{4} w^{4}+\frac{2}{6} w^{6}-\frac{1}{8} w^{8}+C \\
& =-\frac{1}{4} \cos ^{4} x+\frac{1}{3} \cos ^{6} x-\frac{1}{8} \cos ^{8} x+C
\end{aligned}
$$

Finally, you could use Euler to rewrite the integrand (as in Example 10 of Euler) and then integrate the result. It's a fun exercise and too much effort for an exam but the result is that

$$
\sin ^{5} x \cos ^{3} x=\frac{1}{2^{7}}(\sin (8 x)-2 \sin (6 x)-2 \sin (4 x)+6 \sin (2 x))
$$

so that the integral is

$$
\frac{1}{2^{7}}\left(-\frac{1}{8} \cos (8 x)+\frac{1}{3} \cos (6 x)+\frac{1}{2} \cos (4 x)-3 \cos (2 x)\right)+C
$$

See these three antiderivatives at https://www.desmos.com/calculator/5sofhlu062
$5 \mathrm{~b}(12 \mathrm{pts})$.(Source: 7.2 more. 2 r) When $\tan x$ appears to an even power and $\sec x$ to an odd power, substituting $u=\tan x$ or $u=\sec x$ won't work. Instead, rewrite the integral as

$$
\int \tan ^{2} x \sec ^{3} x d x=\int\left(\sec ^{2} x-1\right) \sec ^{3} x d x=\int \sec ^{5} x d x-\int \sec ^{3} x d x
$$

and use the reduction formula:

$$
\begin{aligned}
& =\frac{1}{4} \sec ^{3} x \tan x+\frac{3}{4} \int \sec ^{3} x d x-\int \sec ^{3} x d x \\
& =\frac{1}{4} \sec ^{3} x \tan x-\frac{1}{4} \int \sec ^{3} x d x \\
& =\frac{1}{4} \sec ^{3} x \tan x-\frac{1}{4}\left(\frac{1}{2} \sec x \tan x-\frac{1}{2} \int \sec x d x\right) \\
& =\frac{1}{4} \sec ^{3} x \tan x-\frac{1}{8} \sec x \tan x+\frac{1}{8} \ln |\sec x+\tan x|+C
\end{aligned}
$$

$5 \mathrm{c}(12 \mathrm{pts})$.(Source: 7.2 .41 , Euler.10c) Rewrite the integrand using Euler's formula:

$$
\begin{aligned}
\sin 5 x \cos 6 x & =\left(\frac{e^{i 5 x}-e^{-i 5 x}}{2 i}\right)\left(\frac{e^{i 6 x}+e^{-i 6 x}}{2}\right) \\
& =\frac{e^{i 11 x}-e^{-i 11 x}-e^{i x}+e^{-i x}}{4 i} \\
& =\frac{1}{2}\left(\frac{e^{i 11 x}-e^{-i 11 x}}{2 i}-\frac{e^{i x}-e^{-i x}}{2 i}\right) \\
& =\frac{1}{2}(\sin 11 x-\sin x)
\end{aligned}
$$

Now integration is straightforward:

$$
\begin{aligned}
\int \sin 5 x \cos 6 x d x & =\frac{1}{2} \int(\sin 11 x-\sin x) d x \\
& =\frac{-1}{22} \cos 11 x+\frac{1}{2} \cos x+C
\end{aligned}
$$

$5 \mathrm{~d}(12 \mathrm{pts})$.(Source: 7.1.25,28) Integrate by parts twice:

$$
\begin{gathered}
u=x^{2} \quad d v=\sinh x d x \\
d u=2 x d x \quad v=\cosh x \\
\int x^{2} \sinh x d x=u v-\int v d u=x^{2} \cosh x-\int 2 x \cosh x d x \\
U=2 x \quad \begin{array}{rl}
d V & =\cosh x d x \\
d U=2 d x & V=\sinh x \\
& =x^{2} \cosh x-\left[2 x \sinh x-\int 2 \sinh x d x\right] \\
& =x^{2} \cosh x-2 x \sinh x+2 \cosh x+C
\end{array}
\end{gathered}
$$

