MATH 220-03 (Kunkle), Exam 4
Name:
100 pts, 75 minutes
Nov 17, 2022
Page 1 of 2
No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.
$1(11 \mathrm{pts})$. Find the particular solution to $(y-1) \frac{d y}{d x}-x y(x+1)=0$ that passes through the point $x=0, y=1$. You are not required to express y as a function of x in your solution.
$2(26 \mathrm{pts})$. Find a power series representation of the given function.
a. $\ln (2+x)$
b. $\frac{x^{2}}{2+x}$
c. $(3-x)^{-3}$
d. $e^{-x^{2}}$
$3(15 \mathrm{pts})$. Use the definition of Taylor series to find the Taylor series for $\frac{1}{2+x}$ centered at $a=1$.
$4 \mathrm{a}(7 \mathrm{pts})$. Find $T_{4}(x)$, the Taylor polynomial of degree 4 centered at $a=0$ for $\cos x$.
$4 \mathrm{~b}(10 \mathrm{pts})$. Find a positive number b so that $\left|\cos x-T_{4}(x)\right| \leq 10^{-3}$ for all x in $[-b, b]$.
Hint: $b=10^{-99}$ is correct but won't earn you any credit. On this problem, the larger the correct b, the better the answer.
$5(25 \mathrm{pts})$. This problem is about the curve parametrized by $x=t^{2}-1, y=\frac{1}{3} t^{3}-t$.
a. Find $\frac{d y}{d x}$ along this curve. Express your answer as a function of t.
b. At which t-values, if any, is the line tangent to the curve horizontal?
c. At which t-values, if any, is the line tangent to the curve vertical?
d. Find $\frac{d^{2} y}{d x^{2}}$ along this curve. Express your answer as a function of t.
e. Find the length of this curve from $t=0$ to $t=1$.
$6(6 \mathrm{pts})$. Match the graphs of the functions $x=f(t)$ and $y=g(t)$ in a-d with the curves given parametrically by these equations in I-IV.

1 (11 pts).(Source: $9 \cdot 3 \cdot 3,6,14$) To find the general solution, separate variables and integrate:

$$
\frac{y-1}{y} d y=x(x+1) d x \quad \int\left(1-\frac{1}{y}\right) d y=\int\left(x^{2}+x\right) d x \quad y-\ln |y|=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+C
$$

To find the particular solution in question, set $x=0$ and $y=1$ and solve for C :

$$
1-0=0+C \quad \Longrightarrow \quad y-\ln |y|=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}+1
$$

$2 \mathrm{ab}(15 \mathrm{pts}) \cdot \frac{1}{2+x}=\frac{1}{2} \cdot \frac{1}{1-\left(\frac{-x}{2}\right)}=\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{-x}{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{2^{n+1}}$.
2a.(Source: 11.9.15,11.10.12) Integrate:

$$
\ln (2+x)=\int \frac{1}{2+x} d x=\sum_{n=0}^{\infty}(-1)^{n} \int \frac{x^{n}}{2^{n+1}} d x=C+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{(n+1) 2^{n+1}}
$$

Evaluate at $x=0$ to find C :

$$
\ln 2=C+\sum_{n=0}^{\infty} 0 \Longrightarrow \ln (2+x)=\ln 2+\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+1}}{(n+1) 2^{n+1}} .
$$

2b.(Source: 11.9.9) Multiply the series for $\frac{1}{2+x}$ by x^{2} :

$$
\frac{x^{2}}{2+x}=x^{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n}}{2^{n+1}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{n+2}}{2^{n+1}}
$$

$2 \mathrm{c}(6 \mathrm{pts})$. Solution one (Source: 11.9.13,18) Differentiate $(1-x)^{-1}$ twice and divide by 2 :

$$
\begin{array}{ll}
(1-x)^{-1}=\sum_{n=0}^{\infty} x^{n} & 2(1-x)^{-3}=\sum_{n=2}^{\infty} n(n-1) x^{n-2} \\
(1-x)^{-2}=\sum_{n=1}^{\infty} n x^{n-1} & (1-x)^{-3}=\sum_{n=2}^{\infty} \frac{n(n-1)}{2} x^{n-2}
\end{array}
$$

Now $(3-x)^{-3}=\frac{1}{3^{3}}\left(1-\frac{x}{3}\right)^{-3}=\frac{1}{3^{3}} \sum_{n=2}^{\infty} \frac{n(n-1)}{2}\left(\frac{x}{3}\right)^{n-2}=\sum_{n=2}^{\infty} \frac{n(n-1)}{2} \frac{x^{n-2}}{3^{n+1}}$.
Solution two (Source: 11.10.31,33) Use the binomial series.

$$
\begin{equation*}
\frac{1}{3^{3}}\left(1+\left(-\frac{x}{3}\right)\right)^{-3}=\frac{1}{3^{3}} \sum_{n=0}^{\infty}\binom{-3}{n}\left(-\frac{x}{3}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n}\binom{-3}{n} \frac{x^{n}}{3^{n+3}} \tag{2}
\end{equation*}
$$

To see that (1) and (2) are the same series, reindex (1) $\sum_{n=0}^{\infty} \frac{(n+2)(n+1)}{2} \frac{x^{n}}{3^{n+2}}$. Now observe that, if $n=0$, then $(-1)^{0}\binom{-3}{0}=1=\frac{1 \cdot 2}{2}$, and if n is not zero, then

$$
\begin{aligned}
(-1)^{n}\binom{-3}{n} & =(-1)^{n} \frac{(-3)(-4) \cdots(-3-(n-1))}{1 \cdot 2 \cdots(n-1) n} \\
& =\frac{3 \cdot 4 \cdots n(n+1)(n+2)}{1 \cdot 2 \cdot 3 \cdot 4 \cdots n}=\frac{(n+1)(n+2)}{2}
\end{aligned}
$$

2 d (5 pts).(Source: 11.10.35) $\quad e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$, so $e^{-x^{2}}=\sum_{n=0}^{\infty} \frac{\left(-x^{2}\right)^{n}}{n!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{n!}$.
$3(15 \mathrm{pts})$.(Source: 11.10 .22$)$ Let $g(x)=\frac{1}{2+x}$ and calculate Taylor coefficients at $a=1$ until the pattern in clear.

n	$g^{(n)}(x)$	$g^{(n)}(1)$	$g^{(n)}(1) / n!$
0	$(2+x)^{-1}$	$\frac{1}{3}$	$\frac{1}{3}$
1	$-(2+x)^{-2}$	$-\frac{1}{3^{2}}$	$-\frac{1}{3^{2}}$
2	$2(2+x)^{-3}$	$2 \frac{1}{3^{3}}$	$\frac{1}{3^{3}}$
3	$-3 \cdot 2(2+x)^{-4}$	$-3!\frac{1}{3^{4}}$	$-\frac{1}{3^{4}}$

The Taylor series is

$$
\frac{1}{3}-\frac{1}{3^{2}}(x-1)+\frac{1}{3^{3}}(x-1)^{2}-\frac{1}{3^{4}}(x-1)^{3}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{(x-1)^{n}}{3^{n+1}} .
$$

$4 \mathrm{a}(7 \mathrm{pts})$.(Source: 11.11.4) Either calculate the first four Taylor coefficients as in 3, or remember that

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
$$

and so

$$
T_{4}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}
$$

$4 \mathrm{~b}(10 \mathrm{pts})$.(Source: 11.11.28) Observe that, for this function, $T_{4}(x)=T_{5}(x)$. Taylor's Theorem tells us that, for some c between x and 0 ,

$$
\left|\cos x-T_{5}(x)\right|=\left|\frac{\cos ^{(6)} c}{6!} x^{6}\right|=\frac{\left|\cos ^{(6)} c\right|}{6!}|x|^{6} \leq \frac{1}{6!} b^{6} .
$$

To ensure that $\left|\cos x-T_{5}(x)\right| \leq 10^{-3}$, set $\frac{1}{6!} b^{6} \leq 10^{-3}$ and solve to find $b \leq \sqrt[6]{6!\cdot 10^{-3}}$. For the best answer, take $b=\sqrt[6]{6!\cdot 10^{-3}}$.
5.(Source: 10.2.12,17)
$5 \mathrm{a}(5 \mathrm{pts}) . \frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{t^{2}-1}{2 t}=\frac{1}{2} t-\frac{1}{2} t^{-1}$.
$5 \mathrm{~b}(2 \mathrm{pts})$. The tangent line is horizontal when $\frac{d y}{d t}=0 \neq \frac{d x}{d t}$, at $t= \pm 1$.
$5 \mathrm{c}(2 \mathrm{pts})$. The tangent line is vertical when $\frac{d y}{d t} \neq 0=\frac{d x}{d t}$, at $t=0$.
$5 \mathrm{~d}(5 \mathrm{pts}) \cdot \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)=\frac{\frac{d}{d t}\left(\frac{d y}{d x}\right)}{\frac{d x}{d t}}=\frac{\frac{d}{d t}\left(\frac{1}{2} t-\frac{1}{2} t^{-1}\right)}{2 t}=\frac{\frac{1}{2}+\frac{1}{2} t^{-2}}{2 t}=\frac{1}{4} t^{-1}+\frac{1}{4} t^{-3}$.
$5 \mathrm{e}(11 \mathrm{pts}) . \int_{0}^{1} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}} d t=\int_{0}^{1} \sqrt{(2 t)^{2}+\left(t^{2}-1\right)^{2}} d t$

$$
=\int_{0}^{1} \sqrt{4 t^{2}+t^{4}-2 t^{2}+1} d t=\int_{0}^{1} \sqrt{t^{4}+2 t^{2}+1} d t
$$

$$
=\int_{0}^{1} \sqrt{\left(t^{2}+1\right)^{2}} d t=\int_{0}^{1}\left(t^{2}+1\right) d t=\left.\left(\frac{1}{3} t^{3}+t\right)\right|_{0} ^{1}=\frac{4}{3}
$$

$6(6 \mathrm{pts})$.(Source: 10.1.24) a:II b:III c:IV d:I
a is the only curve that passes though $(0,0)$.
b is the only curve that passes through $(-1,1)$ and $(-1,-1)$.
Of c and d, only c passes through $(-1,1)$.
a begins and ends with a vertical tangent and has two horizontal tangents in between.
b begins and ends with a horizontal tangent and has one vertical tangent in between.
Excluding the point $(-1,1)$, c has one horizontal and one vertical tangent.
Excluding the point $(0,1)$, d has one horizontal and two vertical tangents.

Complete your course-instructor evaluations at https://coursereview.cofc.edu/

