
MATH 220–03 (Kunkle), Exam 3
100 pts, 75 minutes
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Oct. 27, 2022 Page 1 of 1

No notes, books, electronic devices, or outside materials of any kind.

Read each problem carefully and simplify your answers.

Unless otherwise indicated, supporting work will be required on every problem worth more
than 2 points.

You are expected to know the values of all trig functions at multiples of π/4 and of π/6.

1(14 pts). Find the radius of convergence of the power series
∞
∑

n=2

(x+ 1)n

3n lnn
.

2(15 pts). Evaluate the limit. Show your work, but your answer to each should be a number,
∞, −∞, or “does not exist”.

a. lim
n→∞

(n+ 1)!

(n− 1)!
b. lim

n→∞
3n51−n c. lim

n→∞

(−1)n

1 + n

3(20 pts). Find the sum, if it exists.

a.
∞
∑

n=0

(

(0.1)n−1 − (0.9)n
)

b.
∞
∑

n=1

ln(n)

ln(4n)

4(23 pts). Determine whether the series converges or diverges.

a.

∞
∑

n=1

sin2 n

3n + 1
b.

∞
∑

n=0

n2 + 2

n3 + 3

5(10 pts). Find an upper bound for the error that occurs when we approximate the sum of

the series

∞
∑

n=1

1

n4
with the partial sum

100
∑

n=1

1

n4
.

(That is, find a number # which satisfies error < #.)

6(18 pts). Determine whether the series

∞
∑

n=2

(−1)n

n lnn
converges absolutely, converges condi-

tionally, or diverges.
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1(14 pts).(Source: 11.8.17) The solution to a radius-of-convergence problem typically begins
with either the Root or Ratio test. Here’s a solution with Ratio:

∣

∣

∣

(x+1)n+1

3n+1 ln(n+1)

∣

∣

∣

∣

∣

∣

(x+1)n

3n lnn

∣

∣

∣

=
|x+ 1|n+1

|x+ 1|n
·

3n

3n+1
·

lnn

ln(n+ 1)
=

|x+ 1|

3
·

lnn

ln(n+ 1)
.

To take the limit of lnn
ln(n+1) , use l’Hospital’s Rule:

lnn

ln(n+ 1)
→

“ ∞

∞

”
HR

→֒
1
n
1

n+1

=
n+ 1

n
= 1 +

1

n
→ 1.

Therefore,

lim
n→∞

|x+ 1|

3
·

lnn

ln(n+ 1)
=

|x+ 1|

3
.

The Ratio test tells us that the series converges (absolutely) when

|x+ 1|

3
< 1, or |x+ 1| < 3,

and so the Radius of Convergence is 3.

If you used the Root test, you would need to take the limit of

∣

∣

∣

∣

(x+ 1)n

3n lnn

∣

∣

∣

∣

1/n

=
|x+ 1|

3
(lnn)1/n

As n → ∞, the term y = (lnn)1/n has the indeterminate form ∞0. Since the variable is
in the exponent, take the limit of ln y, which is

ln
(

(lnn)1/n
)

=
1

n
ln(lnn) =

ln(lnn)

n
→

“ ∞

∞

”
HR

→֒
1

n lnn

1
→ 0.

Therefore, by l’Hôpital’s Rule, ln y → 0 as n → ∞, and therefore y = eln y → e0 = 1.

This means that the limit in the root test is |x+1|
3

, and the rest of the solution is the same
as with the Ratio test.
2a(5 pts).(Source: 11.1.37) Simplify (n+1)!

(n−1)! by canceling common factors:

(n+ 1)!

(n− 1)!
=

1 · 2 · 3 · · · (n− 1)n(n+ 1)

1 · 2 · 3 · · · (n− 1)
= n(n+ 1),

which goes to ∞ as n → ∞.
2b(5 pts).(Source: 11.1.27) By limit 1 of Flesk∗, limn→∞ 3n51−n = limn→∞

(

3
5

)n
· 5 = 0.

∗ https://kunklet.people.cofc.edu/MATH220/flesk.pdf
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2c(5 pts).(Source: 11.1.35)
(−1)n

1+n equals 1
n+1 if n is even and −1

n+1 is n is odd, so it’s fair to
say that

−1

n+ 1
≤

(−1)n

1 + n
≤

1

n+ 1
.

Since limn→∞
−1
n+1 = limn→∞

1
n+1 = 0, the Squeeze theorem implies that limn→∞

(−1)n

1+n
also equals 0.

3a(10 pts). (Source: 11.2.32)
∑∞

n=0(0.1)
n−1 and

∑∞
n=0(0.9)

n are both convergent geometric
series (with r = 0.1 in the first case and 0.9 in the second, both between −1 and 1).
Therefore

∞
∑

n=0

(

(0.1)n−1 − (0.9)n
)

=

∞
∑

n=0

(0.1)n−1 −

∞
∑

n=0

(0.9)n =
a

1− 0.1
−

ã

1− 0.9
,

where a and ã are the first terms of each series. Therefore the sum is 10
0.9 − 1

0.1 (which
could be rewritten 100

9
− 10 = 10

9
).

3b(10 pts).(Source: 11.2.37,11.1.38) limn→∞
lnn

ln(4n)
= limn→∞

lnn
lnn+ln 4

= limn→∞
1

1+ ln 4
lnn

=
1

1+0 = 1. You could instead take this limit using l’Hospital’s Rule:

lnn

ln(4n)
→

“ ∞

∞

”
HR

→֒
1
n

4 · 1
4n

= 1 → 1.

Since this limit is nonzero,
∑∞

n=1
ln(n)
ln(4n) diverges by the nth term test (also known as the

Test for Divergence) 7 , p. 713 of our text.

4a(10 pts). (Source: 11.4.10) Since 0 ≤ sin2 n ≤ 1,

0 ≤
sin2 n

3n + 1
≤

1

3n + 1
≤

1

3n
,

and since
∑∞

n=0(
1
3 )

n is a convergent geometric series (convergent because r = 1
3 is between

−1 and 1),
∑∞

n=1
sin2 n
3n+1 is convergent by the Comparison test.

4b(13 pts).(Source: 11.4.16) Limit-compare this positive series with the Harmonic series
∑∞

n=1
1
n :

lim
n→∞

n2 + 2

n3 + 3
÷

1

n
= lim

n→∞

n3 + 2n

n3 + 3
.

Either apply l’Hôpital’s Rule to this or, as shown below, divide top and bottom by n3:

lim
n→∞

1 + 2
n2

1 + 3
n3

= 1

Since this limit is positive and finite, and since the Harmonic series is known to diverge,
∑∞

n=0
n2+2
n3+3

also diverges by the Limit Comparison test.
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5(10 pts).(Source: 11.3.more) Because the function 1
x4 is positive and decreasing on [1,∞),

the Integral test implies that the error

∞
∑

n=1

1

n4
−

100
∑

n=1

1

n4
=

∞
∑

n=101

1

n4
≤

∫ ∞

100

1

x4
dx.

(See page 44 of https://kunklet.people.cofc.edu/MATH220/220review.pdf.) We calculate
the improper integral to be

lim
b→∞

∫ b

100

x−4 dx = lim
b→∞

−
1

3
x−3

∣

∣

∣

b

100
= lim

b→∞
−
1

3
b−3 +

1

3
· 100−3 =

1

3
· 100−3,

and therefore the error is ≤ 1
3
· 10−6.

6(18 pts). (Source: 11.6.38,11.3.21,11.5.6) First test for absolute convergence. Since (x lnx)−1

is positive and decreasing on [2,∞), the integral test says that the series
∑∞

n=2(n lnn)−1

and the improper integral
∫∞

2
(x lnx)−1 dx either both converge or both diverge. The

indefinite integral
∫

(x lnx)−1 dx = ln(lnx) + C, and so the improper integral

∫ ∞

2

1

x lnx
dx = lim

c→∞
ln(lnx)

∣

∣

∣

c

2
= lim

c→∞

(

ln(ln c)− ln(ln 2)
)

= ∞.

Therefore
∑∞

n=2(n lnn)−1 also diverges, and the
∑∞

n=2 (−1)n(n lnn)−1 fails to converge
absolutely.
Now test the original series for convergence using the Alternating Series test. (n lnn)−1

decreases and goes to zero as n → ∞, so the AST tells us that
∑∞

n=2 (−1)n(n lnn)−1

converges. Since it does not converge absolutely, the series converges conditionally.


