MATH 220-03 (Kunkle), Exam 3
Name:
Oct. 27, 2022
No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.
$1(14 \mathrm{pts})$. Find the radius of convergence of the power series $\sum_{n=2}^{\infty} \frac{(x+1)^{n}}{3^{n} \ln n}$.
$2(15 \mathrm{pts})$. Evaluate the limit. Show your work, but your answer to each should be a number, $\infty,-\infty$, or "does not exist".
a. $\lim _{n \rightarrow \infty} \frac{(n+1)!}{(n-1)!}$
b. $\lim _{n \rightarrow \infty} 3^{n} 5^{1-n}$
c. $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{1+n}$
$3(20 \mathrm{pts})$. Find the sum, if it exists.
a. $\sum_{n=0}^{\infty}\left((0.1)^{n-1}-(0.9)^{n}\right)$
b. $\sum_{n=1}^{\infty} \frac{\ln (n)}{\ln (4 n)}$
$4(23 \mathrm{pts})$. Determine whether the series converges or diverges.
a. $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{3^{n}+1}$
b. $\sum_{n=0}^{\infty} \frac{n^{2}+2}{n^{3}+3}$
$5(10 \mathrm{pts})$. Find an upper bound for the error that occurs when we approximate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ with the partial sum $\sum_{n=1}^{100} \frac{1}{n^{4}}$.
(That is, find a number \# which satisfies error $<\#$.)
$6(18 \mathrm{pts})$. Determine whether the series $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \ln n}$ converges absolutely, converges conditionally, or diverges.

1 (14 pts).(Source: 11.8 .17 ) The solution to a radius-of-convergence problem typically begins with either the Root or Ratio test. Here's a solution with Ratio:

$$
\frac{\left|\frac{(x+1)^{n+1}}{3^{n+1} \ln (n+1)}\right|}{\left|\frac{(x+1)^{n}}{3^{n} \ln n}\right|}=\frac{|x+1|^{n+1}}{|x+1|^{n}} \cdot \frac{3^{n}}{3^{n+1}} \cdot \frac{\ln n}{\ln (n+1)}=\frac{|x+1|}{3} \cdot \frac{\ln n}{\ln (n+1)}
$$

To take the limit of $\frac{\ln n}{\ln (n+1)}$, use l'Hospital's Rule:

$$
\frac{\ln n}{\ln (n+1)} \rightarrow " \frac{\infty}{\infty} \stackrel{{ }^{H R}}{\rightarrow} \frac{\frac{1}{n}}{\frac{1}{n+1}}=\frac{n+1}{n}=1+\frac{1}{n} \rightarrow 1
$$

Therefore,

$$
\lim _{n \rightarrow \infty} \frac{|x+1|}{3} \cdot \frac{\ln n}{\ln (n+1)}=\frac{|x+1|}{3}
$$

The Ratio test tells us that the series converges (absolutely) when

$$
\frac{|x+1|}{3}<1, \quad \text { or } \quad|x+1|<3
$$

and so the Radius of Convergence is 3 .
If you used the Root test, you would need to take the limit of

$$
\left|\frac{(x+1)^{n}}{3^{n} \ln n}\right|^{1 / n}=\frac{|x+1|}{3}(\ln n)^{1 / n}
$$

As $n \rightarrow \infty$, the term $y=(\ln n)^{1 / n}$ has the indeterminate form $\infty^{0}$. Since the variable is in the exponent, take the limit of $\ln y$, which is

$$
\ln \left((\ln n)^{1 / n}\right)=\frac{1}{n} \ln (\ln n)=\frac{\ln (\ln n)}{n} \rightarrow " \frac{\infty}{\infty} \stackrel{H R}{\hookrightarrow} \frac{\frac{1}{n \ln n}}{1} \rightarrow 0
$$

Therefore, by l'Hôpital's Rule, $\ln y \rightarrow 0$ as $n \rightarrow \infty$, and therefore $y=e^{\ln y} \rightarrow e^{0}=1$.
This means that the limit in the root test is $\frac{|x+1|}{3}$, and the rest of the solution is the same as with the Ratio test.
$2 \mathrm{a}(5 \mathrm{pts})$.(Source: 11.1.37) Simplify $\frac{(n+1)!}{(n-1)!}$ by canceling common factors:

$$
\frac{(n+1)!}{(n-1)!}=\frac{1 \cdot 2 \cdot 3 \cdots(n-1) n(n+1)}{1 \cdot 2 \cdot 3 \cdots(n-1)}=n(n+1)
$$

which goes to $\infty$ as $n \rightarrow \infty$.
2 b (5 pts).(Source: 11.1.27) By limit 1 of Flesk ${ }^{*}, \lim _{n \rightarrow \infty} 3^{n} 5^{1-n}=\lim _{n \rightarrow \infty}\left(\frac{3}{5}\right)^{n} \cdot 5=0$.

* https://kunklet.people.cofc.edu/MATH220/flesk.pdf
$2 \mathrm{c}(5 \mathrm{pts})$.(Source: 11.1.35) $\frac{(-1)^{n}}{1+n}$ equals $\frac{1}{n+1}$ if $n$ is even and $\frac{-1}{n+1}$ is $n$ is odd, so it's fair to say that

$$
\frac{-1}{n+1} \leq \frac{(-1)^{n}}{1+n} \leq \frac{1}{n+1}
$$

Since $\lim _{n \rightarrow \infty} \frac{-1}{n+1}=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0$, the Squeeze theorem implies that $\lim _{n \rightarrow \infty} \frac{(-1)^{n}}{1+n}$ also equals 0 .
$3 \mathrm{a}(10 \mathrm{pts})$. (Source: 11.2 .32$) \quad \sum_{n=0}^{\infty}(0.1)^{n-1}$ and $\sum_{n=0}^{\infty}(0.9)^{n}$ are both convergent geometric series (with $r=0.1$ in the first case and 0.9 in the second, both between -1 and 1). Therefore

$$
\sum_{n=0}^{\infty}\left((0.1)^{n-1}-(0.9)^{n}\right)=\sum_{n=0}^{\infty}(0.1)^{n-1}-\sum_{n=0}^{\infty}(0.9)^{n}=\frac{a}{1-0.1}-\frac{\tilde{a}}{1-0.9}
$$

where $a$ and $\tilde{a}$ are the first terms of each series. Therefore the sum is $\frac{10}{0.9}-\frac{1}{0.1}$ (which could be rewritten $\frac{100}{9}-10=\frac{10}{9}$ ).
$3 \mathrm{~b}(10 \mathrm{pts})$.(Source: $11.2 .37,11.1 .38) \quad \lim _{n \rightarrow \infty} \frac{\ln n}{\ln (4 n)}=\lim _{n \rightarrow \infty} \frac{\ln n}{\ln n+\ln 4}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{\ln 4}{\ln n}}=$ $\frac{1}{1+0}=1$. You could instead take this limit using l'Hospital's Rule:

$$
\frac{\ln n}{\ln (4 n)} \rightarrow \frac{" \infty}{\infty} \stackrel{H R}{\hookrightarrow} \frac{\frac{1}{n}}{4 \cdot \frac{1}{4 n}}=1 \rightarrow 1
$$

Since this limit is nonzero, $\sum_{n=1}^{\infty} \frac{\ln (n)}{\ln (4 n)}$ diverges by the $n$th term test (also known as the Test for Divergence) | 7 |
| :---: |
| , p. 713 of our text. |

$4 \mathrm{a}(10 \mathrm{pts})$. (Source: 11.4.10) $\quad$ Since $0 \leq \sin ^{2} n \leq 1$,

$$
0 \leq \frac{\sin ^{2} n}{3^{n}+1} \leq \frac{1}{3^{n}+1} \leq \frac{1}{3^{n}}
$$

and since $\sum_{n=0}^{\infty}\left(\frac{1}{3}\right)^{n}$ is a convergent geometric series (convergent because $r=\frac{1}{3}$ is between -1 and 1), $\sum_{n=1}^{\infty} \frac{\sin ^{2} n}{3^{n}+1}$ is convergent by the Comparison test.
4 b (13 pts).(Source: 11.4.16) Limit-compare this positive series with the Harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ :

$$
\lim _{n \rightarrow \infty} \frac{n^{2}+2}{n^{3}+3} \div \frac{1}{n}=\lim _{n \rightarrow \infty} \frac{n^{3}+2 n}{n^{3}+3}
$$

Either apply l'Hôpital's Rule to this or, as shown below, divide top and bottom by $n^{3}$ :

$$
\lim _{n \rightarrow \infty} \frac{1+\frac{2}{n^{2}}}{1+\frac{3}{n^{3}}}=1
$$

Since this limit is positive and finite, and since the Harmonic series is known to diverge, $\sum_{n=0}^{\infty} \frac{n^{2}+2}{n^{3}+3}$ also diverges by the Limit Comparison test.
$5(10 \mathrm{pts})$.(Source: 11.3.more) Because the function $\frac{1}{x^{4}}$ is positive and decreasing on $[1, \infty)$, the Integral test implies that the error

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}-\sum_{n=1}^{100} \frac{1}{n^{4}}=\sum_{n=101}^{\infty} \frac{1}{n^{4}} \leq \int_{100}^{\infty} \frac{1}{x^{4}} d x
$$

(See page 44 of https://kunklet.people.cofc.edu/MATH220/220review.pdf.) We calculate the improper integral to be

$$
\lim _{b \rightarrow \infty} \int_{100}^{b} x^{-4} d x=\lim _{b \rightarrow \infty}-\left.\frac{1}{3} x^{-3}\right|_{100} ^{b}=\lim _{b \rightarrow \infty}-\frac{1}{3} b^{-3}+\frac{1}{3} \cdot 100^{-3}=\frac{1}{3} \cdot 100^{-3}
$$

and therefore the error is $\leq \frac{1}{3} \cdot 10^{-6}$.
$6(18 \mathrm{pts})$. (Source: $11.6 .38,11.3 .21,11.5 .6)$ First test for absolute convergence. Since $(x \ln x)^{-1}$ is positive and decreasing on $[2, \infty)$, the integral test says that the series $\sum_{n=2}^{\infty}(n \ln n)^{-1}$ and the improper integral $\int_{2}^{\infty}(x \ln x)^{-1} d x$ either both converge or both diverge. The indefinite integral $\int(x \ln x)^{-1} d x=\ln (\ln x)+C$, and so the improper integral

$$
\int_{2}^{\infty} \frac{1}{x \ln x} d x=\left.\lim _{c \rightarrow \infty} \ln (\ln x)\right|_{2} ^{c}=\lim _{c \rightarrow \infty}(\ln (\ln c)-\ln (\ln 2))=\infty
$$

Therefore $\sum_{n=2}^{\infty}(n \ln n)^{-1}$ also diverges, and the $\sum_{n=2}^{\infty}(-1)^{n}(n \ln n)^{-1}$ fails to converge absolutely.
Now test the original series for convergence using the Alternating Series test. $(n \ln n)^{-1}$ decreases and goes to zero as $n \rightarrow \infty$, so the AST tells us that $\sum_{n=2}^{\infty}(-1)^{n}(n \ln n)^{-1}$ converges. Since it does not converge absolutely, the series converges conditionally.

