MATH 220-03 (Kunkle), Exam 2
Name:
Oct. 6, 2022
Page 1 of 2
No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.
You may use, without proof, any of these reduction formulas that are relevant.

$$
\begin{aligned}
& \int \sin ^{n} x d x=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} \int \sin ^{n-2} x d x \\
& \int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x \\
& \int \tan ^{n} x d x=\frac{1}{n-1} \tan ^{n-1} x-\int \tan ^{n-2} x d x \\
& \int \sec ^{n} x d x=\frac{1}{n-1} \sec ^{n-2} x \tan x+\frac{n-2}{n-1} \int \sec ^{n-2} x d x \quad(n \neq 1)
\end{aligned}
$$

1 (11 pts). Evaluate the limit: $\lim _{x \rightarrow 1} x^{\frac{1}{1-x}}$
$2(16 \mathrm{pts})$. Find the length of the curve $y=\ln (\sec x)$ for $0 \leq x \leq \frac{\pi}{4}$.
3 (28 pts). Evaluate the indefinite integral:
a. $\int \frac{d x}{\left(x^{2}-4\right)^{3 / 2}}$
b. $\int \frac{x^{2}+2 x}{x-2} d x$
$4(13 \mathrm{pts})$. Find the partial fraction decomposition of $\frac{5 x^{2}-15 x+7}{(x+1)(x-2)^{2}}$. You are not required to integrate this function.
$5(13 \mathrm{pts})$. Evaluate the improper integral $\int_{0}^{3} \frac{1}{(x-2)^{3}} d x$ or show that it diverges.
$6(10 \mathrm{pts})$. Approximate the integral $\int_{1 / 2}^{2} \sqrt{1+\ln x} d x$ using Simpson's Rule with $n=6$ subintervals. You are not required to express your answer in decimal form. 7 (9 pts). Suppose

$$
\left|f^{(2)}(x)\right| \leq 7 \quad\left|f^{(3)}(x)\right| \leq 9 \quad\left|f^{(4)}(x)\right| \leq 16 \quad\left|f^{(5)}(x)\right| \leq 31
$$

on $[10,20]$.
How large an n must we use to approximate $\int_{10}^{20} f(x) d x$ using the trapezoid rule with an absolute error at most 10^{-5} ? Write your answer in an inequality of the form $n \geq \#$ for some number \#. You are not required to express your answer in decimal form.

Hint:

$$
\left|E_{T}\right| \leq \frac{K(b-a)^{3}}{12 n^{2}} \quad\left|E_{S}\right| \leq \frac{L(b-a)^{5}}{180 n^{4}}
$$

1 (11 pts).(Source: 4.4.61) This limit is of the indeterminate form 1^{∞}. Let $y=x^{\frac{1}{1-x}}$ and take the limit as $x \rightarrow 1$ of

$$
\ln y=\ln x^{\frac{1}{1-x}}=\frac{\ln x}{1-x} \rightarrow \frac{" 0}{0} \stackrel{\text { "HR }}{\hookrightarrow} \frac{x^{-1}}{-1}
$$

which goes to -1 as $x \rightarrow 1$. Therefore, by l'Hospital's Rule, $\lim _{x \rightarrow 1} \ln y$ also equals -1 , and so $\lim _{x \rightarrow 1} y=\lim _{x \rightarrow 1} e^{\ln y}=e^{-1}$.
$2(16 \mathrm{pts})$.(Source: $8.1 .14,15) \quad$ Recall that $\frac{d}{d x} \ln |\sec x|=\tan x$.
The required arclength equals $\int d s=\int_{x=0}^{x=\pi / 4} \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x=$

$$
\int_{0}^{\pi / 4} \sqrt{1+(\tan x)^{2}} d x=\int_{0}^{\pi / 4} \sqrt{\sec ^{2} x} d x
$$

Since $\sec x>0$ on the interval $[0, \pi / 4]$, the integral equals

$$
\begin{aligned}
& \int_{0}^{\pi / 4} \sec x d x=\left.\ln |\tan x+\sec x|\right|_{0} ^{\pi / 4} \\
& \quad=\ln \left|\tan \frac{\pi}{4}+\sec \frac{\pi}{4}\right|-\ln |\tan 0+\sec 0|=\ln |1+\sqrt{2}|-\ln |0+1|=\ln (1+\sqrt{2})
\end{aligned}
$$

$3 \mathrm{a}(18 \mathrm{pts})$. (Source: 7.3.18) We want $x^{2}-4=4 \sec ^{2} \theta-4$, which equals $4 \tan ^{2} \theta$, so let $x=2 \sec \theta$. This necessitates $d x=2 \sec \theta \tan \theta d \theta$, and the integral becomes

$$
\int \frac{2 \sec \theta \tan \theta}{\left(4 \tan ^{2} \theta\right)^{3 / 2}} d \theta=\int \frac{2 \sec \theta \tan \theta}{8 \tan ^{3} \theta} d \theta=\frac{1}{4} \int \frac{\sec \theta}{\tan ^{2} \theta} d \theta
$$

Rewrite in terms of sine and cosine and substitute $u=\sin \theta$:

$$
=\frac{1}{4} \int \frac{\cos \theta}{\sin ^{2} \theta} d \theta=\frac{1}{4} \int u^{-2} d u=-\frac{1}{4} u^{-1}+C=-\frac{1}{4}(\sin \theta)^{-1}+C
$$

To rewrite this answer in terms of the original variable x, draw a right triangle with interior angle θ. Label two sides using $\sec \theta=x / 2$, and then find the third side by the Pythagorean theorem, as shown in the figure. Consequently, the integral equals

$$
-\frac{1}{4}(\sin \theta)^{-1}=-\frac{1}{4} \frac{x}{\sqrt{x^{2}-4}}+C
$$

$3 \mathrm{~b}(10 \mathrm{pts})$.(Source: $7.4 .7,8$) When the degree of the numerator fails to be less than that of the demominator, perform long division:

$$
\begin{array}{r}
x-2 \begin{array}{c}
x+4 \\
-\left(x^{2}+2 x-2 x\right) \\
\frac{-(4 x-8)}{8}
\end{array}
\end{array}
$$

Long division continues until the degree of the remainder is less than that of the divisor. Now integrate:

$$
\begin{aligned}
\int \frac{x^{2}+2 x}{x-2} d x & =\int\left(x+4+\frac{8}{x-2}\right) d x \\
& =\frac{1}{2} x^{2}+4 x+8 \ln |x-2|+C
\end{aligned}
$$

(corrected) $\left(\frac{8}{x-2}\right.$ already has the form $\frac{A}{x-2}$, so there's no need to search for its PFD.)

4(13 pts).(Source: 7.4.19) The partial fraction decomposition has the form

$$
\frac{5 x^{2}-15 x+7}{(x+1)(x-2)^{2}}=\frac{A}{x+1}+\frac{B}{x-2}+\frac{C}{(x-2)^{2}}
$$

Multiply both sides by $(x+1)(x-2)^{2}$:

$$
5 x^{2}-15 x+7=A(x-2)^{2}+B(x+1)(x-2)+C(x+1)
$$

Now find a system of three equations in A, B, and C. Solving will be easy if we generate two of these by evaluating at $x=-1$ and $x=2$. For the third, I evaluated at $x=0$, but there are many different correct third equations.

$$
\begin{aligned}
& \text { at } x=-1, \quad 27=9 A \quad A=3 \\
& \text { at } x=2, \quad-3=C \quad \Longrightarrow \quad B=2 \\
& \text { at } x=0, \quad 7=4 A-2 B+C \quad C=-1 \\
& =12-2 B-1
\end{aligned}
$$

and so the PFD is $\frac{3}{x+1}+\frac{2}{x-2}-\frac{1}{(x-2)^{2}}$.
$5(13 \mathrm{pts})$.(Source: $7.8 .29,21,33)$ The integrand is unbounded at x near 2 , so we must break up the integral into two:

$$
\int_{0}^{2} \frac{1}{(x-2)^{3}} d x+\int_{2}^{3} \frac{1}{(x-2)^{3}} d x
$$

For the original integral to converge, we insist that both of these converge.

The first equals the limit

$$
\begin{aligned}
\int_{0}^{2} \frac{1}{(x-2)^{3}} d x=\lim _{\zeta \rightarrow 2^{-}} \int_{0}^{\zeta}(x-2)^{-3} d x & =\lim _{\zeta \rightarrow 2^{-}}-\left.\frac{1}{2}(x-2)^{-2}\right|_{0} ^{\zeta} \\
& =\lim _{\zeta \rightarrow 2^{-}}-\frac{1}{2}(\zeta-2)^{-2}+\frac{1}{2}(-2)^{-2}
\end{aligned}
$$

Since $(\zeta-2)^{-2}=\frac{1}{(\zeta-2)^{2}} \rightarrow \infty$ as $\zeta \rightarrow 2$, the improper integral $\int_{0}^{2} \frac{1}{(x-2)^{3}} d x$ diverges (to $-\infty$). Therefore, $\int_{0}^{3} \frac{1}{(x-2)^{3}} d x$ also diverges.
$6(10 \mathrm{pts})$.(Source: 7.7 .17$)$ Divide the interval $[1 / 2,2]$ into 6 subintervals length $\Delta x=(2-$ $\left.\frac{1}{2}\right) / 6=1 / 4$, and their endpoints will be $1 / 2,3 / 4,1,5 / 4,3 / 2,7 / 4$, and 2 . According to Simpson's rule,

$$
\begin{aligned}
\int_{1 / 2}^{2} \sqrt{1+\ln x} d x \approx \frac{1 / 4}{3}(\sqrt{1+\ln (1 / 2)} & +4 \sqrt{1+\ln (3 / 4)}+2 \sqrt{1+\ln (1)}+4 \sqrt{1+\ln (5 / 4)} \\
& +2 \sqrt{1+\ln (3 / 2)}+4 \sqrt{1+\ln (7 / 4)}+\sqrt{1+\ln (2)})
\end{aligned}
$$

7 (9 pts).(Source: 7.7.more)
The absolute error in the trapezoid rule $\left|E_{T}\right|$ is bounded above by $\frac{K(b-a)^{3}}{12 n^{2}}$, where K is an upper bound on $\left|f^{(2)}(x)\right|$ on $[10,20]$. So, using $K=7$, to ensure that $\left|E_{T}\right| \leq 10^{-5}$, we'll choose n so as to ensure

$$
\frac{7(20-10)^{3}}{12 n^{2}} \leq 10^{-5}
$$

To solve this inequality for n, multiply by $10^{5} n^{2}$ and take square roots. Because multiplication by a positive number and the square root are both increasing functions, applying them to both sides preserves the direction of the inequality:

$$
\frac{7(10)^{3}}{12 n^{2}} 10^{5} \leq n^{2} \quad \Longrightarrow \quad \sqrt{\frac{7(10)^{8}}{12}} \leq n
$$

or

$$
n \geq \sqrt{\frac{7}{12}} 10^{4}
$$

