MATH 220-03 (Kunkle), Exam 1
100 pts, 75 minutes

Name:
Sep 15, 2022

No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$. You may use, without proof, any of these reduction formulas that are relevant.

$$
\begin{aligned}
& \int \sin ^{n} x d x=-\frac{1}{n} \sin ^{n-1} x \cos x+\frac{n-1}{n} \int \sin ^{n-2} x d x \\
& \int \cos ^{n} x d x=\frac{1}{n} \cos ^{n-1} x \sin x+\frac{n-1}{n} \int \cos ^{n-2} x d x \\
& \int \tan ^{n} x d x=\frac{1}{n-1} \tan ^{n-1} x-\int \tan ^{n-2} x d x \\
& \int \sec ^{n} x d x=\frac{1}{n-1} \sec ^{n-2} x \tan x+\frac{n-2}{n-1} \int \sec ^{n-2} x d x \quad(n \neq 1)
\end{aligned}
$$

1. Let $k(x)=x^{2}-4 x$.
$\mathrm{a}(10 \mathrm{pts})$. Find the average value of $k(x)$ on the interval $[0,3]$.
$\mathrm{b}(4 \mathrm{pts})$. Find all numbers c in $[0,3]$ at which $k(c)$ equals its average value or explain why none exist.

Hooke's Law. The magnitude of force necessary to hold a spring distance x beyond its natural length equals $k x$ for some constant k. (That is, the force is proportional to x.)
$2(14 \mathrm{pts})$. It takes $2 \mathrm{ft}-\mathrm{lbs}$ of work to stretch a spring from its natural length of 3 ft to 4 ft . How much work is required to stretch the same spring from 4 ft to 4.5 ft ?
Express your answer as a definite integral, but do not evaluate.
$3(17 \mathrm{pts})$. Let R be the "triangular" region in the first quadrant bounded by $x y=1, y=4$, and $x=1$. Express the following as definite integrals, but do not evaluate.
a. The area of R.
b. The volume swept out by R as it is rotated about $x=2$.
c. The volume of the solid whose footprint in the $x y$-plane is R and whose cross-sections perpendicular to the x-axis are circles with diameter in R.
$4 \mathrm{a}(4 \mathrm{pts})$. Find real numbers x and y so that $e^{-\pi i / 3}=x+i y$.
$4 \mathrm{~b}(10 \mathrm{pts})$. Expand the binomial $\left(u+u^{-1}\right)^{6}$.
$4 \mathrm{c}(11 \mathrm{pts})$. Write $\sin 4 x \cos 3 x$ as a sum of sinusoidal functions.
$5(30 \mathrm{pts})$. Evaluate the indefinite integral.
a. $\int \tan ^{4} x \sec ^{4} x d x$
b. $\int \tan ^{5} x d x$
c. $\int x \ln x d x$
d. $\int x \cosh x d x$
1.(Source: 6.5.9)
$\mathrm{a}(10 \mathrm{pts})$ The average value is $\frac{1}{3} \int_{0}^{3}\left(x^{2}-4 x\right) d x=\left.\frac{1}{3}\left(\frac{1}{3} x^{3}-2 x^{2}\right)\right|_{0} ^{3}=-3$.
$\mathrm{b}(4 \mathrm{pts})$. Because $k(x)$ is continuous, the Mean Value Theorem for Integrals guarantees that $k(c)$ equals its average value at least once on the interval $[0,3]$.

$$
k(c)=c^{2}-4 c=-3 \quad \Longrightarrow \quad 0=c^{2}-4 c+3=(c-3)(c-1) \quad \Longrightarrow \quad c=3 \text { or } 1 .
$$

$2(14 \mathrm{pts})$.(Source: 6.4.9a) Warning: don't confuse the work necessary to stretch the spring from 3 ft to 4 ft with the force necessary to hold the spring at 4 ft .
Let $d w$ be the work to move the spring $d x$ feet when it's extended x feet beyond its natural length 3. Then $d w=$ force \times distance $=k x d x$. According to the first sentence, the work to stretch a spring from its natural length of 3 ft to 4 ft , that is, from $x=0$ to $x=1$, is

$$
2=\int_{0}^{1} k x d x=\left.\frac{1}{2} k x^{2}\right|_{0} ^{1}=\frac{1}{2} k,
$$

from which we learn that $k=4$. Therefore, the work to to stretch the same spring from 4 ft to 4.5 ft , that is, from $x=1$ to $x=1.5$, is $\int_{1}^{1.5} 4 x d x$.
3. The curve $y=\frac{1}{x}$ decreases, hitting the horizontal line $y=4$ at $\left(\frac{1}{4}, 4\right)$ and the vertical line $x=1$ at $(1,1)$. Here's a graph of R, sliced vertically into rectangles (since that will be more useful in part c).
$3 \mathrm{a}(5 \mathrm{pts})$.(Source: 6.1.9) Let $d A$ be the area of the rectangle located at position x. Then $d A=$ height \cdot base $=\left(4-\frac{1}{x}\right) d x$ and $A=\int d A=$ $\int_{x=1 / 4}^{x=1}\left(4-\frac{1}{x}\right) d x$.

(You could also slice R horizontally, in which case the left and right ends of the rectangle at altitude y are $x=\frac{1}{y}$ and $x=1$, respectively, and the total area is $A=\int d A=$ $\int_{y=1}^{y=4}\left(1-\frac{1}{y}\right) d y$.)
$3 \mathrm{~b}(7 \mathrm{pts})$.(Source: $6.2 .15,6.3 .15$) When R is rotated about $x=2$, each vertical rectangle sweeps out a cylindrical shell (below, left)

Let $d V$ be the volume of the shell generated by the rectangle at position x. Its height is $4-\frac{1}{x}$, its radius is $2-x$, and its thickness is $d x$, so $V=\int d V=\int_{1 / 4}^{1} 2 \pi(2-x)\left(4-\frac{1}{x}\right) d x$.
(If you slice R horizontally, rotating each rectangle generates a washer with inner radius 2 and outer radius $2-\frac{1}{y}$, and so $V=\int_{y=1}^{y=4} \pi\left(\left(2-\frac{1}{y}\right)^{2}-1^{2}\right) d y$.)
$3 \mathrm{c}(5 \mathrm{pts})$.(Source: 6.2.more.1p) Slice the solid into infinitely many slices with knife cuts perpendicular to the x-axis. (One slice is shown in yellow above, right.) Let $d V$ be the volume of the (cylindrical) slice at position x. Its circular base has diameter $4-\frac{1}{x}$ and its height is $d x$, and so $V=\int d V=\int_{1 / 4}^{1} \pi\left(\frac{1}{2}\left(4-\frac{1}{x}\right)\right)^{2} d x$, or $\int_{1 / 4}^{1} \frac{\pi}{4}\left(4-\frac{1}{x}\right)^{2} d x$
$4 \mathrm{a}(4 \mathrm{pts})$.(Source: Euler.1.gh) By Euler's formula, $e^{-\pi i / 3}=\cos \left(\frac{-\pi}{3}\right)+i \sin \left(\frac{-\pi}{3}\right)=\frac{1}{2}-i \frac{\sqrt{3}}{2}$. $4 \mathrm{~b}(10 \mathrm{pts})$.(Source: Euler.8.a,e) \quad The sixth row of Pascal's triangle is $\begin{array}{llllllll}1 & 6 & 15 & 20 & 15 & 6 & 1\end{array}$ and so

$$
\begin{aligned}
& \left(u+u^{-1}\right)^{6} \\
& \quad=u^{6}+6 u^{5}\left(u^{-1}\right)^{1}+15 u^{4}\left(u^{-1}\right)^{2}+20 u^{3}\left(u^{-1}\right)^{3}+15 u^{2}\left(u^{-1}\right)^{4}+6 u^{1}\left(u^{-1}\right)^{5}+\left(u^{-1}\right)^{6} \\
& \quad=u^{6}+6 u^{4}+15 u^{2}+20+15 u^{-2}+6 u^{-4}+u^{-6}
\end{aligned}
$$

4c(11 pts).(Source: Euler.9.a)

$$
\begin{aligned}
\sin 4 x \cos 3 x & =\left(\frac{e^{i 4 x}-e^{-i 4 x}}{2 i}\right)\left(\frac{e^{i 3 x}+e^{-i 3 x}}{2}\right)=\frac{e^{i 7 x}-e^{-i 7 x}+e^{i x}-e^{-i x}}{4 i} \\
& =\frac{1}{2}\left(\frac{e^{i 7 x}-e^{-i 7 x}}{2 i}+\frac{e^{i x}-e^{-i x}}{2 i}\right)=\frac{1}{2}(\sin 7 x+\sin x) .
\end{aligned}
$$

$5 \mathrm{a}(9 \mathrm{pts})$.(Source: $7.2 \cdot 22,26$) Since the exponent of $\sec x$ is even, we can substitute $t=\tan x$ so that $d t=\sec ^{2} x d x$. The integral becomes

$$
\begin{aligned}
& \int \tan ^{4} x \sec ^{4} x d x=\int \tan ^{4} x \sec ^{2} \sec ^{2} x d x=\int \tan ^{4} x\left(\tan ^{2} x+1\right) \sec ^{2} x d x \\
= & \int t^{4}\left(t^{2}+1\right) d t=\int\left(t^{6}+t^{4}\right) d t=\frac{1}{7} t^{7}+\frac{1}{5} t^{5}+C=\frac{1}{7} \tan ^{7} x+\frac{1}{5} \tan ^{5} x+C
\end{aligned}
$$

5a. Alternate solution.

$$
\begin{aligned}
& \int \tan ^{4} x \sec ^{4} x d x=\int \tan ^{4} x\left(\sec ^{2}\right)^{2} d x=\int \tan ^{4} x\left(\tan ^{2} x+1\right)^{2} d x \\
= & \int \tan ^{4} x\left(\tan ^{4} x+2 \tan ^{2} x+1\right) d x=\int\left(\tan ^{8} x+2 \tan ^{6} x+\tan ^{4} x\right) d x \\
= & \int \tan ^{8} x d x+2 \int \tan ^{6} x d x+\int \tan ^{4} x d x \\
= & \frac{1}{7} \tan ^{7} x-\int \tan ^{6} x d x+2 \int \tan ^{6} x d x+\int \tan ^{4} x d x \\
= & \frac{1}{7} \tan ^{7} x+\int \tan ^{6} x d x+\int \tan ^{4} x d x \\
= & \frac{1}{7} \tan ^{7} x+\frac{1}{5} \tan ^{5} x-\int \tan ^{4} x d x+\int \tan ^{4} x d x=\frac{1}{7} \tan ^{7} x+\frac{1}{5} \tan ^{5} x+C
\end{aligned}
$$

You could similarly rewrite the integrand entirely in terms of $\sec x$ and use another reduction formula.

5 b (5 pts).(Source: 7.2 more.2e) Using the reduction formula for $\int \tan ^{n} x d x$ on page 1 ,

$$
\begin{aligned}
\int \tan ^{5} x d x & =\frac{1}{4} \tan ^{4} x-\int \tan ^{3} x d x=\frac{1}{4} \tan ^{4} x-\left[\frac{1}{2} \tan ^{2} x-\int \tan x d x\right] \\
& =\frac{1}{4} \tan ^{4} x-\frac{1}{2} \tan ^{2} x+\ln |\sec x|+C
\end{aligned}
$$

5b. Alternate solution. Rewrite the integrand in terms of $\sin x$ and $\cos x$.

$$
\int \frac{\sin ^{5} x}{\cos ^{5} x} d x=\int \frac{\left(1-\cos ^{2} x\right)^{2}}{\cos ^{5} x} \sin x d x=\int \frac{1-2 \cos ^{2} x+\cos ^{4} x}{\cos ^{5} x} \sin x d x
$$

Now substitute $\xi=\cos x$, which means $\sin x d x=-d \xi$, and the integral becomes

$$
\begin{aligned}
& \int \frac{1-2 \xi^{2}+\xi^{4}}{\xi^{5}}(-d \xi)=\int\left(-\xi^{-5}+2 \xi^{-3}-\xi^{-1}\right) d \xi \\
= & \frac{1}{4} \xi^{-4}-\xi^{-2}-\ln |\xi|+C=\frac{1}{4} \sec ^{4} x-\sec ^{2} x+\ln |\sec x|+C
\end{aligned}
$$

$5 \mathrm{c}(10 \mathrm{pts})$.(Source: $7 \cdot 1 \cdot 11,26,27)$ When using integration by parts, choose u and $d v$ so that their product $u d v$ exactly equals what follows the integral sign in your problem.

$$
\begin{array}{rlrl}
u & =\ln x & d v & =x d x \\
d u & =x^{-1} d x & v & =\frac{1}{2} x^{2},
\end{array}
$$

The integral becomes

$$
\frac{1}{2} x^{2} \ln x-\int \frac{1}{2} x d x=\frac{1}{2} x^{2} \ln x-\frac{1}{4} x^{2}+C
$$

$5 \mathrm{~d}(6 \mathrm{pts})$.(Source: $7.1 .25,3.11$) Integrate by parts:

$$
\begin{array}{rlrl}
u & =x \quad d v & =\cosh x d x \\
d u & =d x & v & =\sinh x
\end{array}
$$

and the integral becomes

$$
x \sinh x-\int \sinh x d x=x \sinh x-\cosh x+C
$$

