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1.1: Systems of linear equations

Solutions

A solution to a system of linear equations in the variables x1, x2, . . . , xn

(1.1.1)

a1,1x1 + a1,2x2 + · · · + a1,nxn = b1

a2,1x1 + a2,2x2 + · · · + a2,nxn = b2

...

am,1x1 + am,2x2 + · · · + am,nxn = bm

is a set of values of x1, x2, . . . , xn that together satisfy every equation in the system.
A linear system of m equations in n unknowns is sometimes called an m× n system.

1.1.re1. (x1, x2) = (2, 1) is a solution to the 2× 2 linear system

(1.1.2)
x1 + 2x2 = 4

5x1 − 2x2 = 8

because both equations of the system are true at these x-values:

2 + 2(1) = 4

5(2)− 2(1) = 8

In 1.1.re2, we see that (x1, x2) = (2, 1) is the only solution to (1.1.2).

A linear system can have either no solutions, one solution, or infinitely many solutions.
A system is said to be consistent if it has at least one solution and inconsistent otherwise.

1.1.re2.

x2

x1

x2

x1

x2

x1

x1 + 2x2 = 4

5x1 − 2x2 = 8

x1 + 2x2 = 4

2x1 + 4x2 = 8

x1 + 2x2 = 4

2x1 + 4x2 = 5

one solution infinitely many solutions no solutions
consistent consistent inconsistent
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Elementary row operations

The three types of elementary row operations are

interchange:

replacement:

scaling:

ri →← rj

ri ← ri + c rj

ri ← c ri (c 6= 0)

Here, ri denotes the ith row in the matrix, and ← denotes the assignment of a new value.
An elementary row operation

(1) does not change the number of rows in the matrix, and

(2) can be undone by another elementary row operation.

1.1.re3. Perform the given elementary row operation on the matrix

W =





1 0 2 3
4 5 0 6
7 8 9 0





What row operation will return the matrix to its original state?

a. r2 ← −4 r2 b. r3 ← r3 + 5 r1 c. r1 →← r3
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Augmented matrix form; row reduction

To solve the linear system (1.1.1), rewrite it in augmented matrix form

(1.1.3)









a1,1 a1,2 · · · a1,n b1
a2,1 a2,2 · · · a2,n b2
...

...
...

...
am,1 am,2 · · · am,n bm









and then row-reduce by a sequence of elementary row operations. (We’ll discuss row
reduction in greater detail in section 1.2.)

1.1.re4. Solve the linear system by row reduction.

x1 + 2x2 = 4

5x1 − 2x2 = 8

row operation aug. matrix linear system inverse row op.

1 2 4
5 −2 8

x1 + 2x2 = 4

5x1 − 2x2 = 8
r2 ← r2 + 5 r1

r2 ← r2 − 5 r1
1 2 4
0 −12 −12

x1 + 2x2 = 4

−12x2 = −12
r2 ← −12 r2

r2 ← − 1
12 r2

1 2 4
0 1 1

x1 + 2x2 = 4

x2 = 1
r1 ← r1 + 2 r2

r1 ← r1 − 2 r2
1 0 2
0 1 1

x1 = 2

x2 = 1

end example 1.1.re4

Two matrices are row equivalent if one can be obtained from the other by a sequence of
row operations, and two linear systems are row equivalent if their augmented matrices
are row equivalent. If the matrices A and B are row equivalent, we write

A ∼ B

1.1.re4, continued. Because
[

1 2 4
5 −2 8

]

∼
[

1 0 2
0 1 1

]

,

we say that the linear systems

x1 + 2x2 = 4

5x1 − 2x2 = 8
and

x1 = 4

x2 = 1

are also row equivalent.



MATH 203 review: 1.1 http://kunklet.people.cofc.edu/ 9:06 24 April 2023 page 4

Fact 1.1.4. If two linear systems are row equivalent, then they have the same solutions.

In row reduction, our goal is to reduce the original system to one whose solutions are
obvious.

1.1.re5. Solve the linear system.

a. b.
x1 + 5x2 + x3 = 20

2x1 + 9x2 + 5x3 = 45

x1 + 5x2 + 2x3 = 23

x1 − 2x2 + x3 = −5
−3x1 + 8x2 − 2x3 = 17

x1 + 2x2 + 3x3 = 2

row op. aug. matrix

1 5 1 20
2 9 5 45
1 5 2 23

r2 ← r2 − 2 r1

r3 ← r3 − r1

1 5 1 20
0 −1 3 5
0 0 1 3

r2 ← r2 − 3 r3

r1 ← r1 − r3

1 5 0 17
0 −1 0 −4
0 0 1 3

r1 ← r1 + 5 r2

r2 ← − r2

1 0 0 −3
0 1 0 4
0 0 1 3

row op. aug. matrix

1 −2 1 −5
−3 8 −2 17
1 2 3 2

r2 ← r2 + 3 r1

r3 ← r3 − r1

1 −2 1 −5
0 2 1 2
0 4 2 7

r3 ← r3 − 2 r2

1 −2 1 −5
0 2 1 2
0 0 0 3

In a., the final augmented matrix translates to the single solution:

x1 = −3, x2− = 4, x3 = 3.

But in b., the bottom row of the last matrix translates to 0x1 +0x2 +0x3 = 3, and so the
system has no solutions.

1.1.re6. Solve the system (expressed here in augmented matrix form).

a.

[

1 3 −1
−2 −5 1

]

b.

[

3 2 22
−12 −7 −83

]

c.

[

1 −2 −3
5 −9 −15

]

d.

[

2 4 −19
2 5 −24

]

e.





1 2 −6
−1 −1 −2
2 3 −1



 f.





1 1 2
−1 1 8
2 5 19





g.





1 4 0 7
3 13 0 23
1 6 1 16



 h.





1 1 3 −1
6 8 19 −4
1 −13 −4 −12



 i.





1 2 2 −4
−4 −6 −4 15
0 4 18 3




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1.1.re7. For what value(s) of ℓ is the linear system consistent?

a.

[

2 ℓ 3
−4 5 1

]

b.

[

2 3 −1
−4 6 ℓ

]

c.

[

2 3 −1
−4 −6 ℓ

]

Answers

1.1.re.e3a.







1 0 2 3

−16 −20 0 −24
7 8 9 0






; r2 ← − 1

4 r2. 1.1.re.e3b.







1 0 2 3

4 5 0 6

12 8 19 15






; r3 ← r3 − 5r1

1.1.re.e3c.







7 8 9 0

4 5 0 6

1 0 2 3






; r1 →← r3. 1.1.re.e6a. (2,−1) 1.1.re.e6b. (4, 5) 1.1.re.e6c. (−3, 0)

1.1.re.e6d. (1/2,−5) 1.1.re.e6e. inconsistent 1.1.re.e6f. (−3, 5) 1.1.re.e6g. (−1, 2, 5)
1.1.re.e6h. inconsistent 1.1.re.e6i. (−2,−3/2, 1/2) 1.1.re.e7a. consistent for all ℓ 6= −5/2.
1.1.re.e7b. consistent for all ℓ. 1.1.re.e7c. consistent only if ℓ = 2.
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1.2: Row reduction, echelon forms

A row (or column) consisting entirely of zeros is called a zero row (or column); any other
row (or column) is called nonzero. The lead entry of a nonzero row is its leftmost
nonzero entry. A zero row has no lead entry.

1.2.re1. The lead entries of the matrix

A =







4 0 2 1 −1 0
0 0 0 −2 0 3
0 0 0 0 0 0
0 1 3 0 −3 0







are 4 (first row), −2 (second row), and 1 (fourth row). The third row of A has no lead
entry.

A matrix is in row echelon form, or ref, if
1. all nonzero rows are above all zero rows, and
2. the lead entry of each row lies to the right of the lead entries of the rows above it.

If a matrix is in ref, then all column entries beneath any lead entry are zeros. A matrix is
in reduced row echelon form, or rref, if, in addition to 1. and 2.,

3. The lead entry of each row equals 1, and
4. Each leading entry is the only nonzero element of its column.

When a matrix is in row echelon form, the lead entries of its nonzero rows are called pivots,
and the rows and columns containing pivots are called pivot rows and pivot columns.

1.2.re1, continued. The matrix B is in row echelon form. The matrix C is in reduced row
echelon form. The pivots are marked with boxes.

B =











4 0 2 1 −1 0

0 1 3 0 −3 0

0 0 0 −2 0 3
0 0 0 0 0 0











C =











1 0 1/2 0 −1/4 3/8

0 1 3 0 −3 0

0 0 0 1 0 −3/2
0 0 0 0 0 0











1.2.re2. What row operations transform A to B and B to C? Be careful: there can be
more than one correct answer, but order matters.
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Row reduction

Every matrix can be row reduced to one of row echelon form, and from there to reduced
row echelon form, by a process called row reduction or Gaussian elimination.

In the forward phase, we produce a matrix in row echelon form by using row interchanges
and replacements to produce zeros below each pivot, starting at the leftmost pivot column
and working to the right. Specifically,

a: interchange rows, if necessary, so that the leftmost nonzero column contains
a nonzero entry in the top row, and

b: subtract multiples of the pivot row from rows beneath it to obtain zeros
below the pivot.

In the backward phase, we use row replacements to produce zeros above each pivot,
starting at the rightmost pivot column and working to the left.

Note:

1: In the forward phase, we always add multiples of the pivot row to the rows
beneath it.

2: In the backward phase, we always add multiples of the pivot row to the
rows above it.

3: We never make row interchanges in during the backward phase.

4: During either the forward or backward phase, we can rescale rows whenever
it’s convenient. To produce a matrix in reduced row echelon form, we must
rescale rows to make all lead entries equal 1.

1.2.re3. When





0 8 4 −1 −14
−6 2 3 1 −5
−12 −20 −6 6 34



 is row-reduced, the forward phase is

row operation result

r1 →← r2

−6 2 3 1 −5
0 8 4 −1 −14
−12 −20 −6 6 34

r3 ← r3 − 2 r1

−6 2 3 1 −5
0 8 4 −1 −14
0 −24 −12 4 44

r3 ← r3 + 3 r2

−6 2 3 1 −5
0 8 4 −1 −14
0 0 0 1 2
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and the backward phase is

row operation result

r2 ←r2 + r3

r1 ←r1 − r3

r2 ← 1
4 r2

−6 2 3 0 −7
0 2 1 0 −3
0 0 0 1 2

r1 ← r1 − 2 r2

−6 0 2 0 −4
0 2 1 0 −3
0 0 0 1 2

To produce the matrix in reduced row echelon form, we rescale rows 1 and 2 :

row operation result

r1 ←− 1
6 r1

r2 ← 1
2 r2

1 0 −1/3 0 2/3

0 1 1/2 0 −3/2
0 0 0 1 2

end example 1.2.re3
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1.2.re4. Here’s another, larger example:

Forward phase: working left to right, identify the pivots and eliminate the nonzero terms
below them:

row operation result

(beginning matrix)

0 −2 4 18 −10 32
3 18 −24 21 6 276
−5 −27 34 −62 7 −508
4 26 −36 11 15 339

r1 →← r2

3 18 −24 21 6 276
0 −2 4 18 −10 32
−5 −27 34 −62 7 −508
4 26 −36 11 15 339

r1 ← 1
3r1

1 6 −8 7 2 92
0 −2 4 18 −10 32
−5 −27 34 −62 7 −508
4 26 −36 11 15 339

r3 ←r3 + 5 r1

r4 ←r4 − 4 r1

1 6 −8 7 2 92

0 −2 4 18 −10 32
0 3 −6 −27 17 −48
0 2 −4 −17 7 −29

r2 ← −1
2
r2

1 6 −8 7 2 92

0 1 −2 −9 5 −16
0 3 −6 −27 17 −48
0 2 −4 −17 7 −29

r3 ← r3 − 3 r2

r4 ← r4 − 2 r2

1 6 −8 7 2 92

0 1 −2 −9 5 −16
0 0 0 0 2 0
0 0 0 1 −3 3

r3 →← r4

1 6 −8 7 2 92

0 1 −2 −9 5 −16
0 0 0 1 −3 3

0 0 0 0 2 0

r4 ← 1
2
r4

1 6 −8 7 2 92

0 1 −2 −9 5 −16
0 0 0 1 −3 3

0 0 0 0 1 0

The forward phase is done and the matrix is in row echelon form.
Now the backward phase: working from right to left, eliminate nonzero terms above each
pivot:
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r3 ← r3 + 3 r4

r2 ← r2 − 5 r4

r1 ← r1 − 2 r4

1 6 −8 7 0 92

0 1 −2 −9 0 −16
0 0 0 1 0 3

0 0 0 0 1 0

r2 ← r2 + 9 r3

r1 ← r1 − 7 r3

1 6 −8 0 0 71

0 1 −2 0 0 11

0 0 0 1 0 3

0 0 0 0 1 0

r1 ← r1 − 6 r2

1 0 4 0 0 5

0 1 −2 0 0 11

0 0 0 1 0 3

0 0 0 0 1 0

The backward phase is done and the matrix is now in reduced row echelon form.
end example 1.2.re4

When a linear system is represented in augmented matrix form, variables whose coefficients
form a pivot column are called basic; all other variables are called free.

1.2.re5. Which variables in the system

8x2 + 4x3 − 1x4 = −14
−6x1 + 2x2 + 3x3 + x4 = −5

−12x1 − 20x2 − 6x3 + 6x4 = 34

are free and which are basic? Find the general solution of the system.

The augmented matrix form of this system was row reduced in 1.2.re3. The pivots are in
columns, 1, 2, and 4, so x1, x2 and x4 are basic variables and x3 is the free variable. The
reduced row echelon form of augmented matrix tells us

x1 − 1/3x3 = 2/3

x2 + 1/2x3 = −3/2
x4 = 2

The basic variables can be expressed in terms of the free variable:

x1 = 2/3 + 1/3x3

x2 = −3/2− 1/2x3

x3 is free

x4 = 2

This is the parametric form of the general solution. Since the parameter x3 is “free”
to take any value, the general solution of this system contains infinitely many individual
solutions (x1, x2, x3, x4).
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Fact 1.2.1. Every matrix is row equivalent to infinitely many row echelon forms, but
only one reduced row echelon form.

1.2.re6. Give an example of two different row echelon forms of I =





1 0 0
0 1 0
0 0 1



.

1.2.re7. Find a row echelon form and the reduced row echelon form of the given matrix.

a.





1 6 9 −3 7
−2 12 30 −6 −71
1 −2 −7 1 33



 b.





6 2 4 0 14
24 8 18 −5 58
0 0 4 5 7



 c.





0 2 −1 −5
15 10 1 −3
0 −6 5 19





d.

[

−4 −8 3 6 −12
4 8 −2 −4 12

]

e.





1 −2 2
3 −6 11
2 0 16



 f.





4 2 4 1
4 −2 7 −10
4 −2 8 −11





1.2.re7, continued. Find the general solution of the system represented in augmented matrix
form by the given matrix.

a. (above) b. (above) c. (above)
d. (above) e. (above) f. (above)
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Fact 1.2.2. Every linear system has either 0, 1, or infinitely many solutions, depending
on the locations of pivots in the row echelon form of the augmented matrix:

Does the rightmost column contain a pivot?
Yes: The system has no solutions.
No: Are there any free variables?

Yes: the system has infinitely many solutions.
No: the system has exactly one solution.

Answers

1.2.re2. B is obtained from A by r2 →← r4, r3 →← r4. C is obtained from B by r3 ← − 1
2
r3, r1 ← r1 − r3,

r1 ← 1
4r1. 1.2.re6. I ∼







1 4 5

0 2 6

0 0 3






∼







4 0 0

0 3 0

0 0 2






.

1.2.re.e7a. one possible ref =







1 6 9 −3 7

0 8 16 −4 −19
0 0 0 0 7






; the rref =







1 0 −3 0 0

0 1 2 −1/2 0

0 0 0 0 1






.

1.2.re.e7b. one possible ref =







6 2 4 0 14

0 0 2 −5 2

0 0 0 5 1






; the rref =







1 1/3 0 0 4/3

0 0 1 0 3/2

0 0 0 1 1/5






.

1.2.re.e7c. one possible ref =







15 10 1 −3
0 2 −1 −5
0 0 1 2






; the rref =







1 0 0 2/3

0 1 0 −3/2
0 0 1 2






.

1.2.re.e7d. one possible ref =

[−4 −8 3 6 −12
0 0 1 2 0

]

; the rref =

[

1 2 0 0 3

0 0 1 2 0

]

.

1.2.re.e7e. one possible ref =







1 −2 2

0 −2 −6
0 0 5






; the rref =







1 0 0

0 1 0

0 0 1






.

1.2.re.e7f. one possible ref =







4 2 4 1

0 4 −3 11

0 0 1 −1






; the rref =







1 0 0 1/4

0 1 0 2

0 0 1 −1






.

1.2.re.e7a. no solutions. 1.2.re.e7b. (x1, x2, x3, x4) = (4/3 − 1/3x2, free, 3/2, 1/5); 1.2.re.e7c. (x1, x2, x3) =

(2/3,−3/2, 2) 1.2.re.e7d. (x1, x2, x3, x4) = (3− 2x2, free,−2x4, free) 1.2.re.e7e. no solutions.

1.2.re.e7f. (x1, x2, x3) = (1/4,2,−1)
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1.3: Vector equations

A matrix with m rows and n columns is said to or size or dimension m × n. A matrix
with only one column is called a vector, and its entries are called its components. A real
number is called a scalar. Often, vector variables are written in bold and scalar variables
are written in math-italic.
The set of all n× 1 vectors is denoted R

n. The zero vector in R
n is denoted 0 (with n to

be made clear by context).

1.3.re1.





1
−2
0



 and





1
0
−3



 are vectors in R
3.







0
1
1
1






is in R

4. In R
2, the symbol 0 refers

to the vector

[

0
0

]

, but in R
3, the same symbol 0 refers to the vector





0
0
0



.

Vector arithmetic, linear combination, span

If

u =









u1

u2
...

um









and v =









v1
v2
...
vm









are vectors of the same size, and c is a scalar, then

u+ v =









u1 + v1
u2 + v2

...
um + vm









and cu =









cu1

cu2
...

cum









If u1,u2, . . .un are vectors of the same size and x1, . . . , xn are scalars, then

x1u1 + x2u2 + · · ·+ xnun

is called a linear combination of u1,u2, . . .un.

1.3.re2.





−8
−5
17



 is a linear combination of





1
−1
2



,





2
1
−3



, and





−1
0
1



, since

2





1
−1
2



− 3





2
1
−3



+ 4





−1
0
1



 =





2
−2
4



+





−6
−3
9



+





−4
0
4



 =





−8
−5
17





The collection of all linear combinations of u1,u2, . . . ,un is called its span, written
span {u1,u2, . . . ,un}. If these vectors lie in R

m, then so does their span. If every vector
in R

m is a linear combination of u1, . . . ,un, these vectors are said to span R
m.
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Linear systems expressed in vector form

Fact 1.3.1. The linear system (1.1.1) is equivalent to the vector equation

x1









a1,1
a2,1
...

am,1









+ x2









a1,2
a2,2
...

am,2









+ · · ·+ xn









a1,n
a2,n
...

am,n









=









b1
b2
...
bm









.

This system is consistent iff









b1
b2
...
bm









∈ span























a1,1
a2,1
...

am,1









,









a1,2
a2,2
...

am,2









, . . . ,









a1,n
a2,n
...

am,n























1.3.re3. Express the first vector as a linear combination of the others or explain why this
is not possible.

a.





−3
−15
18



 ,











1
4
−2



 ,





6
18
6



 ,





5
16
2











b.





11
20
−4



 ,











6
12
0



 ,





1
1
−2



 ,





6
11
0











c.





20
43
14



 ,











6
12
0



 ,





1
1
−2



 ,





6
11
0



 ,





11
20
−4











d.





−6
−7
44



 ,











−1
−2
5



 ,





−1
−1
9



 ,





−2
−1
22











1.3.re4. Find an equation in x, y, z that is equivalent to the consistency of the the system
represented below in augmented matrix form.





1 7 4 x
0 5 3 y
2 9 5 z





Answers

1.3.re.e3a.







1 6 5 −3
4 18 16 −15
−2 6 2 18






∼







1 6 5 −3
0 6 4 3

0 0 0 −1






. Not in the span. 1.3.re.e3b. The given vector is in

the span, since it = 3
2







6

12

0






+ 2







1

1

−2






. 1.3.re.e3c. The given vector is in the span, since it = 1

2







6

12

0






−

7







1

1

−2






+ 4







6

11

0






. 1.3.re.e3d.







−1 −1 −2 −6
−2 −1 −1 −7
5 9 22 44






∼







−1 −1 −2 −6
0 1 3 5

0 0 0 −3






. Not in the span.

1.3.re4. z + y − 2x = 0
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1.4: The product of a matrix and a vector

If the matrix A has matrix with n columns and the vector x has n rows:

A = [ a1 a2 · · · an ] x =









x1

x2
...
xn









then the product of A and x is defined to be

Ax = x1a1 + x2a2 + · · ·+ xnan,

that is, the linear combination of the columns of A with the weights x1, x2, . . . , xn.

Dimensions in matrix-vector products:

(m× n) · (n× 1) = (m× 1)

1.4.re1. Find the product, if it exists.

a.





1 −2
−1 1
0 1



 [ 4 −3 ] b.





1 −2
−1 1
0 1





[

4
−3

]

c.

[

1 2 3
3 0 −1

]





1
−2
4





d.





1 2
2 3
3 −1









2
4
3



 e.

[

2
4

]





0 1
2 3
3 0



 f. [ 1 2 3 ]





1
−2
4





Fact 1.4.1. If A is m× n and u and v are n× 1, and if c is a scalar, then

A(u+ v) = Au+ Av

A(cu) = c(Au)
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Equivalent formations of a linear system

The system of linear equations

a1,1x1 + a1,2x2 + · · ·a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·a2,nxn = b2

...

am,1x1 + am,2x2 + · · ·am,nxn = bm

can be expressed in augmented matrix form:









a1,1 a1,2 · · · a1,n b1
a2,1 a2,2 · · · a2,n b2
...

...
...

...
am,1 am,2 · · · am,n bm









in vector form:

x1









a1,1
a2,1
...

am,1









+ x2









a1,2
a2,2
...

am,2









+ · · ·+ xn









a1,n
a2,n
...

am,n









=









b1
b2
...
bm









or in matrix form:
Ax = b

where

A =









a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n
...

...
...

am,1 am,2 · · · am,n









x =









x1

x2
...
xn









b =









b1
b2
...
bm









The system is consistent iff b lies in the span of the columns of A.
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Spanning sets for Rm

Fact 1.4.2. If A is a matrix with m rows, then the following are equivalent:

1. The columns of A span R
m.

2. The system Ax = b is consistent for every b ∈ R
m.

3. The row echelon form of A has no row of zeros.
4. The row echelon form of A has a pivot in every row.

1.4.re2. Determine whether the given set of vectors spans R3.

a.











3
3
3



 ,





−2
−4
−2



 ,





3
1
4











b.











1
5
1



 ,





2
9
−1



 ,





−1
−1
8











c.











2
2
4



 ,





3
6
15



 ,





1
3
8











d.











1
2
1



 ,





−2
−6
−4



 ,





1
0
0



 ,





−4
−10
−7











e.











2
−4
−6



 ,





−1
1
0



 ,





−10
11
3











1.4.re3. Explain why four vectors in R
5 cannot form a spanning set for R5.

Answers

1.4.re.e1a. d.n.e. 1.4.re.e1b.







10

−7
−3






1.4.re.e1c.

[

9

−1

]

1.4.re.e1d. dne. 1.4.re.e1e. dne. 1.4.re.e1f. [9]

1.4.re.e2a.







3 −2 3

3 −4 1

3 −2 4






∼







3 −2 3

0 2 2

0 0 1






. Spans. 1.4.re.e2b.







1 2 −1
5 9 −1
1 −1 8






∼







1 0 0

0 1 0

0 0 1






Spans.

1.4.re.e2c.







2 3 1

2 6 3

4 15 8






∼







2 0 −1
0 3 2

0 0 0






. Does not span. 1.4.re.e2d.







1 −2 1 −4
2 −6 0 −10
1 −4 0 −7







∼







1 −2 1 −4
0 2 2 2

0 0 1 −1






. Spans. 1.4.re.e2e.







2 −1 −10
−4 1 11

−6 0 3






∼







2 −1 −10
0 −1 −9
0 0 0






. Does not span.

1.4.re3. a. No row or column can contain more than one pivot, and so the number of pivots in a matrix

cannot is exceed its number of rows or number of columns. A 4× 5 matrix contains at most 4 pivots and

consequently must have a row with no pivot.
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1.5: Homogeneous linear systems

A homogeneous linear system is one of the form

Ax = 0.

If A is m×n, then the 0 on the right side is in R
m. A homogenous system always has the

trivial solution x = 0 (in R
n); its has infinitely many solutions iff it has free variables.

(See Fact 1.2.2.)

1.5.re1. Solve the system





3 −1 5 1 −3
6 0 12 3 0
9 −5 13 3 −11















x1

x2

x3

x4

x5











=





−2
−3
−12





Express the general solution in parametric vector form.

Solution:
row operation result

3 −1 5 1 −3 −2
6 0 12 3 0 −3
9 −5 13 3 −11 −12

r2 ←r2 − 2 r1

r3 ←r3 − 3 r1

3 −1 5 1 −3 −2
0 2 2 1 6 1
0 −2 −2 0 −2 −6

r3 ← r3 + r2

3 −1 5 1 −3 −2
0 2 2 1 6 1
0 0 0 1 4 −5

r2 ←r2 − r3

r1 ←r1 − r3

3 −1 5 0 −7 3
0 2 2 0 2 6
0 0 0 1 4 −5

r2 ← 1
2r2

r1 ← r1 + r2

r1 ← 1
3r1

1 0 2 0 −2 2
0 1 1 0 1 3
0 0 0 1 4 −5

As in example 1.2.re5, the solution in parametric form is:

x1 = 2− 2x3 + 2x5

x2 = 3− x3 − x5

x3 is free.

x4 = −5− 4x5

x5 is free.
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To write it in parametric vector form means to express the solution x as a vector and
to use parameters to stand for the values of the free variables. If we let s = x3 and t = x5,
then











x1

x2

x3

x4

x5











=











2
3
0
−5
0











+ s











−2
−1
1
0
0











+ t











2
−1
0
−4
1











end example 1.5.re1

1.5.re2. Solve the homogeneous system associated to the nonhomogeneous system in
1.5.re1:





3 −1 5 1 −3
6 0 12 3 0
9 −5 13 3 −11















x1

x2

x3

x4

x5











=





0
0
0





Augment the coefficient matrix with a column of three zeros, and perform the same row
operations as in 1.5.re1, resulting in





1 0 2 0 −2 0
0 1 1 0 1 0
0 0 0 1 4 0





and so the parametric vector form of the solution to the homogenous system is











x1

x2

x3

x4

x5











= s











−2
−1
1
0
0











+ t











2
−1
0
−4
1











Note that the only difference between this and the solution to 1.5.re1 is the term











2
3
0
−5
0











,

which is itself a solution to 1.5.re1.

Fact 1.5.1. Suppose Au = b. Then the solution set to Ax = b is

{u+ v | Av = 0}.

That is, if u is any solution to Ax = b, then the solutions are exactly those vectors which
can be expressed as u plus a solution v to the associated homogeneous system Ax = 0.
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1.5.re3. Write the solution set to the system (expressed here in augmented matrix form)
in parametric vector form. Then give the solution to the associated homogeneous sys-
tem.

a.





1 1 1 1 3
2 1 0 1 4
1 5 9 5 11



 b.





1 −1 9 6
1 −4 18 12
−2 −23 72 43





c.





−2 7 12 −42 −3 18
1 −1 −1 6 2 2
3 −18 −33 108 6 −54



 d.





−1 1 4 −3 −1
−2 4 14 −8 26
−1 0 1 −2 0





e. [ 3 2 −1 1 ]

Answers

1.5.re.e3a. nonhomo: x =











1

2

0

0











+ s











1

−2
1

0











+ t











0

−1
0

1











. homo: x = s











1

−2
1

0











+ t











0

−1
0

1











. 1.5.re.e3b. nonhomo:

no free variables. only solution is x =







2

−1
1/3






. homo: no free variables. only solution is x =







0

0

0






.

1.5.re.e3c. nonhomo: x =















2

4

0

0

2















+s















−1
−2
1

0

0















+ t















0

6

0

1

0















. homo: x = s















−1
−2
1

0

0















+ t















0

6

0

1

0















. 1.5.re.e3d. nonhomo: no

solutions. homo: x = s











1

−3
1

0











+t











−2
1

0

1











. 1.5.re.e3e. nonhomo: x =







1/3

0

0






+s







−2/3
1

0






+t







1/3

0

1






. homo:

x = s







−2/3
1

0






+ t







1/3

0

1






.
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1.7: Linear independence

Definition 1.7.1. A set of vectors {a1, a2, . . . , an} in R
m is linearly independent if

the only solution to

(1.7.2) x1a1 + x2a2 + · · ·+ xnan = 0 (in R
m)

is x = 0 (in R
n). A set of vectors is linearly dependent if it is not linearly independent.

Fact 1.7.3. If A is a matrix, then the following are equivalent:

1. The columns of A are linearly independent .
2. The homogeneous system Ax = 0 has only the trivial solution x = 0.
3. Ax has no free variables.
4. The row echelon form of A has a pivot in every column.

1.7.re1. Prove each of the following.

a. Any set of more than m vectors in R
m must be linearly dependent.

b. A set of two or more vectors is linearly independent iff some vector in that set is a
linear combination of the others.

c. The linear dependence or independence of a set of vectors {a1, a2, . . . , an} is independent
of the order in which we write the vectors.

d. A set of two vectors is linearly dependent iff one vector is a scalar multiple of the other.

e. Any set containing 0 in linearly dependent.

f. If A is a set of vectors and B ⊂ A, then

i. B is linearly dependent =⇒ A is linearly dependent.

ii. A is linearly independent =⇒ B is linearly independent.

1.7.re2. Determine whether the given set of vectors is linearly independent.

a.











3
3
3



 ,





−2
−4
−2



 ,





3
1
4











b.











1
5
1



 ,





2
9
−1



 ,





−1
−1
8











c.











2
2
4



 ,





3
6
15



 ,





1
3
8











d.











0
3
7



 ,





−2
π
0



 ,





3
0
0











e.

















−1
−2
1
0






,







2
4
−2
0

















f.

















−1
−2
1
0






,







3
0
1
1






,







2
−2
2
1

















g.

















0
0
0
0






,







2
0
−1
e






,







2
−
√
2

1
1

















h.











−1
−2
−1



 ,





1
4
0



 ,





4
14
1



 ,





−3
−8
−2










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1.7.re3. For what values of h is the given set linearly independent?

a.











1
1
−2



 ,





−1
0
4



 ,





2
5
h











b.

















0
1
1
0






,







0
2
h
−2

















c.











0
2
4



 ,





0
−1
−2



 ,





h
h
0











Answers

1.7.re.e1a. Consider the vectors as columns of a matrix. The number of pivots in an m× n matrix

cannot exceed m or n, since each column or row has at most one pivot. A matrix with more than m

columns must therefore contain a column with no pivot. 1.7.re.e1b. First suppose that {a1,a2, . . . ,an}
is linearly independent. Then there exists scalars x1, x2, . . . , xn, not all of which are zero, for which

x1a1 + x2a2 + · · · + xnan = 0. Renumber these terms, if necessary, so that x1 6= 0. Then a1 is a linear

combination of a2, . . . ,an, since a1 = − x2

x1

a2 − · · · − xn

x1

an.

Now suppose that one of {a1,a2, . . . ,an} is a linear combination of the others. Renumber the vectors,

if necessary, so that a1 = c2a2 + · · · + cnan. Then a1 − c2a2 − · · · − cnan = 0. Since at least one of the

scalars 1,−c2, . . . ,−cn is nonzero, {a1,a2, . . . ,an} is linearly dependent. 1.7.re.e1c. The sum on the

right side of x1a1+x2a2+ · · ·+xnan = 0. is unaffected by a reordering of its terms. 1.7.re.e1d. The vec-

tors are linearly independent iff one vector is a linear combination of the other, but a linear combination

of one vector is just a scalar multiple of that vector. 1.7.re.e1e. 1 ·0+0a1 +0a2 + · · ·+0an = 0 and the

scalar 1 6= 0. 1.7.re.e1f. i. If B is linearly dependent, then some element of B is a linear combination of

the other elements of B. But elements of B are also elements of A, so some element of A is a linear

combination of the other elements of A, and therefore A is linearly dependent. ii. By i., if A fails to be

linearly dependent, then B could not have been linearly dependent. 1.7.re.e2a.







3 −2 3

3 −4 1

3 −2 4







∼







3 −2 3

0 2 2

0 0 1






. pivot in each column; linearly independent. 1.7.re.e2b.







1 2 −1
5 9 −1
1 −1 8






∼







1 0 0

0 1 0

0 0 1






.

pivot in each column; linearly independent. 1.7.re.e2c.







2 3 1

2 6 3

4 15 8






∼







2 0 −1
0 3 2

0 0 0






. Third column con-

tains no pivot; linearly dependent. 1.7.re.e2d. Reorder columns to







3 −2 0

0 π 3

0 0 7






and observe a pivot in

every column; linearly independent. 1.7.re.e2e. Observe 2rd vector is −2 times the first. Linearly

dependent. 1.7.re.e2f. Observe 3rd vector is the sum of the first two. Linearly dependent.

1.7.re.e2g. Set contains 0; linearly dependent. 1.7.re.e2h. 4 vectors in R3 must be linearly dependent.

1.7.re.e3a.







1 −1 2

1 0 5

−2 4 h






∼







1 −1 2

0 1 3

0 0 h− 2






. Linearly independent for all h 6= 2.

1.7.re.e3b.











0 0

1 2

1 h

0 −2











∼











1 2

0 −2
1 h

0 0











∼











1 2

0 1

1 h

0 0











∼











1 0

0 1

0 0

0 0











. Linearly independent for all h.

1.7.re.e3c. First vector is −2 times second regardless of value of h. Linearly dependent for all h.
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1.8: Linear Transformations

Domain, codomain and range of a transformation

Transformation is another word for function, a map from one set to another. We use
the symbols

T : U → V

to indicate that T is a transformation from a set U , called its domain, to a set V , called
its codomain. The symbols

T : x 7→ T (x)

can be used to give an explicit formula for T (x), sometimes called the “image” of x under
T . We sometimes put both together, as in

T : U → V : x 7→ T (x).

The collection of all images under T is a subset of the codomain called the range of T .
The domain, codomain, and range of T can be written

domT codomT ranT

1.8.re1. The transformation W : R2 → R
3 :

[

x1

x2

]

7→





x1

x1 − x2

x2



 maps its domain R
2 to

its codomain R
3. The vector





1
0
0



 isn’t in ranW , since the linear system

x1 = 1

x1 − x2 = 0

x2 = 0

has no solution (as you should check for yourself). Therefore, ranW is a proper subset of
R

3.

1.8.re2. (An example from Calculus III) Points (x, y, z) in R
3 can be represented by their

spherical coordinates (ρ, φ, θ), where

x = ρ sinφ cos θ y = ρ sinφ sin θ z = ρ cosφ

The transformation

S : R2 → R
3 :

[

φ
θ

]

7→





sinφ cos θ
sinφ sin θ
cosφ





maps R2 into R
3, and its range is the sets of all points in R

3 for which ρ = 1, which is the
unit sphere:











x
y
z



 : x2 + y2 + z2 = 1






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Linear transformations

A transformation T : Rn → R
m is linear if

T (u+ v) = T (u) + T (v) for all u and v ∈ R
n (additivity)

and
T (cu) = cT (u) for all u ∈ R

n and c ∈ R (homogeneity)

Fact 1.8.1. If A is an m× n matrix, then T : x 7→ Ax is a linear transformation from
R

n to R
m. (See 1.4.1.) The range of T is exactly the span of the columns of A.

1.8.re1, continued. The transformation V is a linear transformation, since

V (

[

x1

x2

]

) =





x1

x1 − x2

x2



 =





1 0
1 −1
0 1





[

x1

x2

]

.

The range of V is the span of the two columns of this matrix. By 1.4.2, two vectors cannot
span all of R3; this explains why were were able to find a vector in R

3 not in ranV .

In the next section, we’ll see that the converse of Fact 1.8.1 is also true.

1.8.re3. The linear transformation T (x) =





1 −1
2 0
3 −2



x maps R2 into R
3. The point





5
6
13





is in the range of T , since





1 −1
2 0
3 −2



x =





5
6
13



 has the solution x =

[

3
−2

]

(as can be

found by row elimination). However,





1 −1
2 0
3 −2



 ∼





1 −1
0 1
0 0



, and so there are vectors in

R
3 that are not equal T (x) for any x ∈ R

2.
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1.8.re4. For the given matrix A and vector u, determine whether u lies in the domain, the
codomain, or range of the transformation T (x) = Ax.

a. A =





1 −1 9
1 −4 27
−3 3 −12



 ;u =





2
1
1



 b. A =





−1 1
−5 7
2 −3



 ;u =





4
30
−14





c. A =

[

2 3 −1
−4 −3 5

]

;u =

[

7
−17

]

d. A =







1 −1 0
1 −4 −18
0 −3 −15
4 −4 3






;u =







3
0
−2
13







Answers

1.8.re.e4a. dom = R3 = codom, so u is in both the domain and codomain. A ∼







1 −1 9

0 −1 6

0 0 3






, and so the

columns of A span R3. Therefore u is in the range of T . 1.8.re.e4b. u 6∈ dom = R2; u ∈ codom =

R3.







−1 1 4

−5 7 30

2 −3 −14






∼







−1 1 4

0 1 5

0 0 1






, so u is not in the range of T . 1.8.re.e4c. u 6∈ dom = R3; u ∈

codom = R2. Since A ∼
[

1 0 −2
0 1 1

]

has a pivot in every row, the range of T is also = R2, and there-

fore u is in the range of T . 1.8.re.e4d. u 6∈ dom = R3. u ∈ codom = R4. u is in the range of T , since

there’s no pivot in the last column of the augmented matrix:










1 −1 0 3

1 −4 −18 0

0 −3 −15 −2
4 −4 3 13











∼











1 0 0 2

0 1 0 −1
0 0 3 1

0 0 0 0











.
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1.9: The matrix representation of a linear transformation

The identity matrix

The n × n identity matrix In is the square matrix with ones on its main diagonal and
zeros elsewhere:

I2 =

[

1 0
0 1

]

I3 =





1 0 0
0 1 0
0 0 1



 I4 =







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







If the value of n is clear from context, the identity matrix is simply referred to as I.
The columns of In are called e1, e2, etc.. For instance, if n = 4, then

e1 =







1
0
0
0






e2 =







0
1
0
0






e3 =







0
0
1
0






e4 =







0
0
0
1







The identity matrix is so named because of the property that

Inx = x1e1 + x2e2 + · · ·+ xnen

= x for all x ∈ R
n.

The standard matrix

Fact 1.9.1. If T is a linear transformation from R
n into R

m, then there exists an m×n
matrix A, called the standard matrix for T , so that

(1.9.2) T (x) = Ax for all x ∈ R
n.

The columns of A are the image under T of the columns of In:

A = [T (e1) T (e2) · · · T (en) ]

1.9.re1. To find the standard matrix for the linear transformation

U : R3 → R
2 :





x1

x2

x3



 7→
[

x1 + 2x2 − 3x3

−2x1 − 4x2

]

,

calculate

U









1
0
0







 =

[

1
−2

]

U









0
1
0







 =

[

2
−4

]

U









0
0
1







 =

[

−3
0

]

Therefore, the standard matrix is
[

1 2 −3
−2 −4 0

]

.

Indeed,
[

1 2 −3
−2 −4 0

]





x1

x2

x3



 =

[

x1 + 2x2 − 3x3

−2x1 − 4x2

]

= U(x).
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One-to-one and onto transformations

A transformation
T : Rn → R

m

is one-to-one (sometimes written “1-1”) if T (u) = T (v) implies u = v.
T maps R

n onto R
m (or simply “T is onto”) if ranT equals all of Rm, that is, if every

b ∈ R
m equals T (x) for some x ∈ R

n

Fact 1.9.3. If the transformation T : Rn → R
m is linear and A is its standard matrix,

then

T is onto
iff the columns of A span R

m.
iff the system Ax = b is consistent for every b ∈ R

m.
iff the row echelon form of A has no row of zeros.
iff ref A has a pivot in every row.

and

T is one-to-one
iff the columns of A are linearly independent.
iff the system Ax = 0 has only the trivial solution x = 0.
iff Ax has no free variables.
iff ref A has a pivot in every column.

(Compare with 1.4.2 and 1.7.3.)

1.9.re1, continued. Applying the row operation r2 ← r2 + 2 r1 to standard matrix of U
shows that

[

1 2 −3
−2 −4 0

]

∼
[

1 2 −3
0 0 −6

]

.

This row echelon form contains a pivot in every row, so U maps R
3 onto R

2. However,
there’s not a pivot in every column, so U fails to be one-to-one. For instance, U sends

both





2
0
0



 and





0
1
0



 to

[

2
−4

]
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Linear transformations in R
2

See Examples 2-3 and Tables 1-4 in section 1.9 of our text (pages 76-80) for some common
geometric transformations from R

2 into R
2 that are linear. Any such transformation has

a 2× 2 standard matrix.

By their definition, cos θ and sin θ are the coordinates of the point θ radians from the
positive x-axis on the unit circle, in the counterclockwise direction if θ > 0 and clockwise
if θ < 0.

θ
1

(cos θ, sin θ)

(cos(θ + π
2 ), sin(θ +

π
2 ))

= (− sin θ, cos θ)

θ + π
2

θ

Consequently, the standard matrix for rotation by θ radians is

[

cos θ cos(θ + π
2
)

sin θ sin(θ + π
2 )

]

, or

[

cos θ − sin θ
sin θ cos θ

]

.
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1.9.re2. Find the standard matrix for the linear transformation T : R2 → R
2 that reflects

across the x2-axis and the rotates the result by π
4
radians in the positive (counterclockwise)

direction. Is T one-to-one? Is it onto?

To find the columns of its standard matrix, find the image under T of

[

1
0

]

and

[

0
1

]

:

Starting point reflected about x1 = 0 then rotated π
4 radians:

x

x

1

2

x

x

1

2

1 x

x

1

2

x

x

1

2

x

x

1

2

x

x

1

2

[

1
0

] [

−1
0

]

[

cos(54π)

sin(54π)

]

[

0
1

] [

0
1

]

[

cos(34π)

sin(34π)

]

Therefore the standard matrix is A =

[

cos( 54π) cos( 34π)

sin( 54π) sin( 34π)

]

=
1√
2

[

−1 −1
−1 1

]

.

T is one-to-one since the reduced row echelon form of its standard matrix,

[

1 0
0 1

]

, has a

pivot in every column. Because there’s also a pivot in every row, T is onto.
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1.9.re3. Find the standard matrix of the given linear transformation. Is the transformation
one-to-one? Is it onto?

a.





x1

x2

x3



 7→
[

x1 + 2x3

x1 + 2x2 + x3

]

b.

[

x1

x2

]

7→





x2

−x1

x1 + x2





c.





x1

x2

x3



 7→





x1 + 2x3

x1 + 2x2 + x3

2x2 − x3



 d.

[

x1

x2

]

7→





x2 + x3

−x1 − x3

x1 + x2 + x3





e. The transformation that rotates points in R
2 −π/3 radians about the ori-

gin.
f. The transformation that sends each point in R

2 to its reflection across the
line x1 = −x2.

g. The transformation that rotates points in R
2 π/4 radians about the origin,

and then projects the result onto the line x1 = 0.
h. The horizontal sheer in R

2 that leaves points on the x1-axis unchanged,
but sends points (0, x2) to ( 1

2
x2, x2).

i. The vertical sheer in R
2 that leaves points on the x2-axis unchanged, but

sends points (x1, 0) to (x1, 2x1).

Answers

1.9.re.e3a.

[

1 0 2

1 2 1

]

. onto, not 1-1. 1.9.re.e3b.







0 1

−1 0

1 1






. 1-1, not onto. 1.9.re.e3c.







1 0 2

1 2 1

0 2 −1






.

neither 1-1 nor onto. 1.9.re.e3d.







0 1 1

−1 0 −1
1 1 1






. both 1-1 and onto. 1.9.re.e3e. 1

2

[

1
√
3

−
√
3 1

]

. both

1-1 and onto. 1.9.re.e3f.

[

0 −1
−1 0

]

. both 1-1 and onto. 1.9.re.e3g. 1√
2

[

0 0

1 1

]

. neither 1-1 nor onto.

1.9.re.e3h.

[

1 1
2

0 1

]

. 1-1 and onto. 1.9.re.e3i.

[

1 0

2 1

]

. 1-1 and onto.
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2.1: Matrix arithmetic

Matrix addition, scalar multiplication

To multiply a matrix by a scalar is to multiply each element by the scalar.
Addition of two matrices is defined only when the matrices are of the same size. In that
case, their sum is calculated term-by-term.

2.1.re1. Find the following, if it exists.

a.

[

1 −1 2
6 −2 −3

]

+

[

0 8 1
−2 −3 10

]

b. −2





1 0 2
−3 2 1
0 2 −1



 c.





1 2
2 1
−1 1



+





5
0
1





Matrix multiplication

If the number of columns of A equals the number of rows of B, then the jth column of
their product AB is defined as the A times the jth column of B:

A [b1 b2 · · · bp ] = [Ab1 Ab2 · · · Abp ]

1. The columns of AB are linear combinations of the columns of A.

2. The rows of AB are linear combinations of the rows of B.

3. The i, j element of AB is the ith row of A times the j column of B.

4. If A is an m× p matrix and B is p× n then their product AB is m× n.

2.1.re2. Find the following, if it exists.

a.

[

1 −1 3
2 4 0

]





4 4
2 1
2 −3



 b.

[

1 −1 2
1 1 0

]





1 −1
−1 1
−1 1





c.





1 0 0
0 1 0
0 0 1









1 −1 3 4
2 0 1 1
9 8 7 6



 d.

[

2 1
0 1

] [

1 2
0 1

]

−
[

1 2
0 1

] [

2 1
0 1

]

e.

[

2 1 0
1 −1 3

]





1 3
3 4
4 0



 f.

[

5 10
10 −1

] [

2 0
1 1

]

g.





1 3
3 4
4 0





[

2 0
1 1

]

h.

[

2 1 0
1 −1 3

]





5 3
10 4
8 0




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Matrix multiplication is defined so that, if A is the standard matrix of the linear operator
T , and B is standard matrix of the operator S, then AB is the standard matrix of the
composition T ◦ S. That is, T

(

S(x)
)

= (AB)x for all x (in the domain of S).

2.1.re3. Find the standard matrices A and B of the given linear operators on R
2.

Then compute the product BA and see that equals the answer to 1.9.re2.
a. Reflection across the x2-axis. b. Rotation about the origin by π/4.

We use the symbol 0 to denote the all-zero matrix (of size made clear by context).
Matrix arithmetic obeys laws similar to the laws of real number arithmetic. See Theorems
1 and 2 in the text. Some important exceptions:

1. AB is not necessarily equal BA.

2. If AB = 0, neither A nor B is necessarily equal 0.

For examples of these, see 2.1.re2.b and d.

Transpose

If A is a matrix, its transpose is the matrix defined by (AT )i,j = Aj,i.

2.1.re4.

[

1 2 3
0 1 2

]T

=





1 0
2 1
3 2



.

See Theorem 3 in the text for important algebraic laws involving the transpose.

2.1.re5. Compute the following.

a.

[

2 1 0
1 0 1

]





−1 1
2 1
−1 1



 b.

[

−1 2 −1
1 1 1

]





2 1
1 0
0 1





Answers

2.1.re.e1a.

[

1 7 3

4 −5 7

]

2.1.re.e1b.







−2 0 −4
6 −4 −2
0 −4 2






. 2.1.re.e1c. d.n.e. 2.1.re.e2a.

[

8 −6
16 12

]

2.1.re.e2b.

[

0 0

0 0

]

. 2.1.re.e2c.







1 −1 3 4

2 0 1 1

9 8 7 6






2.1.re.e2d.

[

0 2

0 0

]

(not zero!) 2.1.re.e2e.

[

5 10

10 −1

]

2.1.re.e2f.

[

20 10

19 −1

]

2.1.re.e2g.







5 3

10 4

8 0






2.1.re.e2h.

[

20 10

19 −1

]

(which equals f.)

2.1.re.e3a.

[−1 0

0 1

]

2.1.re.e3b. 1√
2

[

1 1

−1 1

]

2.1.re.e5a.

[

0 3

−2 2

]

2.1.re.e5b.

[

0 −2
3 2

]
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2.2: The inverse matrix

An n× n matrix A is said to be invertible if there’s an n× n matrix A−1 so that

(2.2.1) A−1A = AA−1 = I

Note that only a square matrix can be invertible.
A square matrix that is not invertible is said to be singular.

2.2.re1.

[

2 3
3 5

]−1

=

[

5 −3
−3 2

]

and

[

5 −3
−3 2

]−1

=

[

2 3
3 5

]

because

[

2 3
3 5

] [

5 −3
−3 2

]

=

[

1 0
0 1

]

=

[

5 −3
−3 2

] [

2 3
3 5

]

Fact 2.2.2.

1. If A is invertible, then its inverse matrix is unique.

2. If A is invertible, then so is A−1 and (A−1)−1 = A.

3. If A and B are invertible (and the same size), then so is AB, and

(AB)−1 = B−1A−1

In the homework in 2.3, we’ll see that the converse to 3 is also true:

4. If A and B are square and AB is invertible, then A and B are both invertible.



MATH 203 review: 2.2 http://kunklet.people.cofc.edu/ 9:06 24 April 2023 page 34

Finding the inverse matrix

Fact 2.2.3. The matrix A is invertible iff it is row equivalent to I, and in that case A−1

can be found by row reduction:

[A | I ] ∼ [ I |A−1 ]

That is, the same row operations that reduce A to I will transform I to A−1.

2.2.re2. To find the inverse of





−1 1 0
2 −4 8
0 3 −11



, augment with the 3×3 identity and row

reduce.

(1)





−1 1 0 1 0 0
2 −4 8 0 1 0
0 3 −11 0 0 1





(2)





1 −1 0 −1 0 0
2 −4 8 0 1 0
0 3 −11 0 0 1





(3)





1 −1 0 −1 0 0
0 −2 8 2 1 0
0 3 −11 0 0 1





(4)





1 −1 0 −1 0 0

0 1 −4 −1 −1
2

0

0 3 −11 0 0 1





(5)









1 −1 0 −1 0 0

0 1 −4 −1 −1
2 0

0 0 1 3 3
2 1









(6)









1 −1 0 −1 0 0

0 1 0 11 11
2 4

0 0 1 3 3
2 1









(7)











1 0 0 10 11
2 4

0 1 0 11 11
2 4

0 0 1 3 3
2 1











Therefore





−1 1 0
2 −4 8
0 3 −11





−1

=











10 11
2

4

11 11
2

4

3 3
2 1











. To check this answer, just confirm that

the matrix product





−1 1 0
2 −4 8
0 3 −11















10 11
2 4

11 11
2

4

3 3
2 1











equals





1 0 0
0 1 0
0 0 1



.

2.2.re3. Find the inverse of the given matrix or explain why it does not exist.

a.





−1 1 0
2 −4 −12
0 3 21



 b.





−1 0 −3
1 0 6
−1 −1 −6



 c.







1 −1 0 0
1 −2 −1 0
1 −1 0 −1
0 1 3 2







d.







2 −2 4 8
1 −2 1 5
0 2 3 −2
1 −1 5 4






e.

[

3 6
−1 −1

]

f.





0 −1 −4
−1 1 1
−1 3 9







MATH 203 review: 2.2 http://kunklet.people.cofc.edu/ 9:06 24 April 2023 page 35

The inverse matrix and solutions to linear systems

Fact 2.2.4. If the n× n matrix A is invertible, then for every b ∈ R
n, the vector A−1b

is the unique solution to Ax = b.

2.2.re4. Use the inverses you found in 2.2.re3 to solve the system Ax = b for the given
matrix A and vector b.

a.

[

3 6
−1 −1

]

,

[

3
2

]

b.





−1 0 −3
1 0 6
−1 −1 −6



 ,





−1
−1
2





c.





−1 1 0
2 −4 −12
0 3 21



 ,





1
−4
0



 d.







1 −1 0 0
1 −2 −1 0
1 −1 0 −1
0 1 3 2






,







0
1
−1
0







e.





−1 1 0
2 −4 −12
0 3 21



 ,





0
0
2



 f.







1 −1 0 0
1 −2 −1 0
1 −1 0 −1
0 1 3 2






,







1
0
2
8







Answers

2.2.re.e3a.













−8 − 7
2
−2

−7 − 7
2 −2

1 1
2

1
3













2.2.re.e3b.







−2 −1 0

0 −1 −1
1
3

1
3 0






. 2.2.re.e3c.



















7
2 − 3

2 −1 − 1
2

5
2

− 3
2
−1 − 1

2

− 3
2

1
2

1 1
2

1 0 −1 0



















2.2.re.e3d. dne. rref of given matrix is











1 0 0 3

0 1 0 −1
0 0 1 0

0 0 0 0











2.2.re.e3e.







− 1
3 −2

1
3

1






. 2.2.re.e3f. dne.

rref of given matrix is







1 0 3

0 1 4

0 0 0






2.2.re.e4a.

[−5
3

]

. 2.2.re.e4b.







3

−1
− 2

3






. 2.2.re.e4c.







6

7

−1







2.2.re.e4d.
[

− 1
2
− 1

2
− 1

2
1
]T

2.2.re.e4e.
[

−4 −4 − 2
3

]T

2.2.re.e4f.
[

− 5
2
− 7

2
9
2
−1

]T
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2.3: The invertible matrix theorem

The invertible matrix theorem 2.3.1. Let A be an n × n matrix. The following
statements are equivalent. That is, for any given A, if any one of these is true, then all of
them are true.

1. A is invertible.

2. A ∼ I.

3. A has n pivots

4. A has a pivot in every row.

5. The columns of A span R
n.

6. Ax = b is consistent for every b ∈ R
n.

7. The transformation T : Rn → R
n : x 7→ Ax is onto∗.

8. A has a pivot in every column.

9. The columns of A are linearly independent.

10. The only solution to Ax = 0 is the trivial solution x = 0.

11. The transformation T : Rn → R
n : x 7→ Ax is one-to-one∗.

12. There’s a matrix B for which AB = I.

13. There’s a matrix C for which CA = I.

14. AT is invertible.

∗A transformation that is both one-to-one and onto is said to be invertible. The above
implies that the transformation

T : Rn → R
n : x 7→ Ax

is invertible iff its standard matrix A is invertible. In that case, the transformation

T−1 : Rn → R
n : x 7→ A−1x

is called the inverse of T and satisfies

T (T−1(x)) = T−1(T (x)) = x for all x ∈ R
n.
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Diagonal and triangular matrices

The main diagonal of a matrix A is the set of its elements {A1,1, A2,2, A3,3, . . .}. A
diagonal matrix is a square matrix whose only nonzero elements lie on the main diagonal.

An upper triangular matrix is one whose every element below the main diagonal is
zero. A lower triangular matrix is one whose every element above the main diagonal
is zero. A triangular matrix is one that is either upper or lower triangular.

A triangular matrix need not be square. A diagonal matrix is both upper and lower
triangular.

2.3.re1. Identify the given matrix as either upper triangular, lower triangular, diagonal,
or none of these.

a.





−1 1 0 3
0 −4 12 7
0 0 9 −1



 b.





1 0 0
0 1 0
−1 0 1



 c.







9 0 0 0
0 −2 0 0
0 0 1 0
0 0 0 2







d.





1 0 0 0
2 3 0 0
1 −1 5 0



 e.

[

3 6
−6 2

]

+

[

1 4
−6 3

]T

f.





−1 0 −3
0 0 6
0 0 −6





g.





0 0 1
−1 0 1
1 1 1





Fact 2.3.2. A square triangular matrix is invertible if and only if its diagonal elements
are all nonzero.

2.3.re2. Which of the matrices in 2.3.re1 are invertible?

2.3.re3. Suppose the linear transformation T maps R
3 onto itself. How many solutions

are there to T (x) = [0 1 2]T ?

2.3.re4. Suppose A is an n × n matrix whose first and second columns have the same
sum as its third and fourth columns. Must there be a b ∈ R

n for which ...
i. Ax = b has more than one solution?
ii. Ax = b has no solution?

2.3.re5. Suppose S maps R
3 into itself but that [1 0 1]T fails to be in the range of S.

Could S still be one-to-one?

2.3.re6. Suppose R : R3 → R
4 is linear and one-to-one. Could R also be onto?

2.3.re7. Suppose A is a square matrix whose row echelon form includes a row of zeros.
Must the row echelon form of AT also include a row of zeros?

2.3.re8. Suppose V : R3 → R
2 is linear and but not one-to-one. Could V be onto?

2.3.re9. Suppose A is a square matrix and that AB = AC but B 6= C. What can you
say about the invertibility of A?
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2.3.re10. Suppose A is a not-necessarily-square matrix and that AB = 0 but B 6= 0 (the
zero matrix). What do you know about the linear independence of the columns of A?

2.3.re11. If the columns of the square matrix A are linearly independent, what do we
know about the linear dependence/independence of the rows of A?

2.3.re12. Suppose the transformation x 7→ Ax is an invertible transformation from R
n to

R
n. What do we know about the number of pivots of the matrix A3?

Answers

2.3.re.e1a. upper triangular. 2.3.re.e1b. lower triangular. 2.3.re.e1c. diagonal. 2.3.re.e1d. lower

triangular 2.3.re.e1e. =

[

4 0

−2 5

]

, lower triangular. 2.3.re.e1f. upper triangular. 2.3.re.e1g. neither

triangular nor diagonal. 2.3.re2. Not a or d, since an invertible matrix must be square; not f, since it is

triangular and has a 0 on its main diagonal. b, c, d, and e are invertible because these triangular matri-

ces have no zeros along their main diagonal. Even though some of its diagonal elements are zero, g is

invertible, because it row reduces to I. 2.3.2 doesn’t apply to g since that matrix isn’t triangular.

2.3.re3. One. There’s one solution since T is onto. Since T is onto, it’s also 1 − 1, so there can’t be two

solutions. 2.3.re4. a. Yes. Ax = 0 has at least two solutions, because A0 and A(e1 +e2−e3−e4) both

equal 0. b. Yes. As shown in a., the collumns of A are linearly dependent. By the invertible matrix

theorem, since A is square, its columns must also fail to span Rn, meaning that there are b ∈ Rn which

can’t be expressed as linear combinations of the columns of A. 2.3.re5. No. The invertible matrix theo-

rem promises that a linear map form Rn into itself is one-to-one iff its is onto. Since S fails to be onto,

it cannot be one-to-one 2.3.re6. No. The standard matrix of R has four rows and three columns. For R

to be onto would require that there be a pivot in every row of its standard matrix. Since there can be at

most pivot per column, there must be at least one row without a pivot. 2.3.re7. Yes, by several applica-

tions of the invertible matrix theorem. If A does not have a pivot in every row, then A is singular (i.e.,

not invertible). Therefore AT is also singular, its row echelon form must include a row with no pivot,

that is, a row of zeros. 2.3.re8. Yes. All that’s necessary is that the 2 × 3 standard matrix of V have a

pivot in every row.

[

1 0 0

0 1 1

]

is one such matrix. 2.3.re9. A is not invertible If A were invertible and

AB = AC, then we could multiply both sides by A−1 to conclude that B = C:

A−1AB = A−1AC =⇒ IB = IC =⇒ B = C.

2.3.re10. The columns of A must be linear dependent. Since B 6= 0, there must be at least one j which

the jth column of B does not equal the zero vector 0; that is Bej 6= 0. But A(Bej) = (AB)ej = 0ej =

0. That is, Ax = 0 has a nontrivial solution. 2.3.re11. By the invertible matrix theorem, the linear

independence of the columns of A implies that A is invertible, which in turn implies that AT is

invertible, which implies that its columns are linearly independent. Since the columns of AT are the

rows of A, the rows of A must also be linearly dependent. 2.3.re12. By the invertible matrix theorem,

A is invertible. Since the product of invertible matrices is invertible, A3 = AAA is also invertible and

hence has n pivots.
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3.1: Introduction to determinants

The determinant is a function whose domain is the set of all square matrices and whose
range is R. The determinant of a matrix A is denoted either det(A) or |A|; despite the
resemblance to the absolute value function, |A| can be negative.
The determinant of a scalar, that is, a 1× 1 matrix, is scalar itself: det(a) = a
The determinant of larger matrices can be written in terms of determinants of smaller
submatrices by cofactor expansion along any row of column. For example, expanding a
2× 2 determinant along the first column looks like this:

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

= + a|d| − c|b| = ad− cb

Expanding a 3× 3 along the first row looks like this:

∣

∣

∣

∣

∣

∣

a b c
d e f
g h i

∣

∣

∣

∣

∣

∣

= + a

∣

∣

∣

∣

e f
h i

∣

∣

∣

∣

− b

∣

∣

∣

∣

d f
g i

∣

∣

∣

∣

+ c

∣

∣

∣

∣

d e
g h

∣

∣

∣

∣

Expanding the same 3× 3 along the middle column looks like this:

∣

∣

∣

∣

∣

∣

a b c
d e f
g h i

∣

∣

∣

∣

∣

∣

= − b

∣

∣

∣

∣

d f
g i

∣

∣

∣

∣

+ e

∣

∣

∣

∣

a c
g i

∣

∣

∣

∣

− h

∣

∣

∣

∣

a c
d f

∣

∣

∣

∣

When we expand along a row or column, we attach the signs seen above according to this
pattern:

(3.1.1)

+ − + − · · ·
− + − + · · ·
+ − + − · · ·
− + − + · · ·
...

...
...

...
. . .

3.1.re1. Find the determinant by expansion along the first row and again along the first
column.

a.

∣

∣

∣

∣

−1 1
2 −4

∣

∣

∣

∣

b.

∣

∣

∣

∣

2 3
4 −1

∣

∣

∣

∣

c.

∣

∣

∣

∣

∣

∣

1 2 3
4 0 −1
5 −2 −3

∣

∣

∣

∣

∣

∣

d.

∣

∣

∣

∣

∣

∣

−1 2 3
0 5 −6
0 0 6

∣

∣

∣

∣

∣

∣
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In general, cofactor expansion along the ith row of an n× n matrix A tells us that

det(A) =
n
∑

j=1

(−1)i+jai,j det(Ai,j)

where ai,j stands for the ith row, jth column element of A, and Ai,j stands for the sub-
matrix of A obtained by deleting its ith row and jth column. Expansion along the jth
column says that

det(A) =

n
∑

i=1

(−1)i+jai,j det(Ai,j).

The (i, j)-cofactor of A is defined as

Ci,j = (−1)i+j det(Ai,j).

The signs of (−1)i+j are seen in (3.1.1). These are not necessarily the signs of Ci,j

Fact 3.1.2. The determinant of a square matrix can be computed by cofactor expansion
along any row or column (and the result will be the same).

Fact 3.1.3. The determinant of a square triangular matrix is the product of its main
diagonal elements.

Note that 3.1.3 applies to diagonal matrices. The proof of 3.1.2 goes beyond the scope of
MATH 203, but, assuming these, you obtain 3.1.3 by expansion along the first column of
an upper triangular matrix, or first row of a lower triangular matrix.

3.1.re2. Find the determinant.

a.

∣

∣

∣

∣

−1 0
2 −4

∣

∣

∣

∣

b.

∣

∣

∣

∣

∣

∣

1 2 3
0 0 −1
0 0 9

∣

∣

∣

∣

∣

∣

c.

∣

∣

∣

∣

∣

∣

∣

1 0 0 0
0 9 0 0
−1 2 7 0
8 0 0 1

3

∣

∣

∣

∣

∣

∣

∣

d.

∣

∣

∣

∣

∣

∣

∣

3 0 0 0
0 2 0 0
0 0 −5 0
0 0 0 −7

∣

∣

∣

∣

∣

∣

∣

Answers

3.1.re.e1a. (−1)(−4)− 1(2) = 2 = (−1)(−4)− 2(1) 3.1.re.e1b. 2(−1)− 3(4) = −14 = 2(−1)− 4(3)

3.1.re.e1c. 1

∣

∣

∣

∣

0 −1
−2 −3

∣

∣

∣

∣

− 2

∣

∣

∣

∣

4 −1
5 −3

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

4 0

5 −2

∣

∣

∣

∣

= 1(−2)− 2(−12 + 5)− 3(−8) = −12.

1

∣

∣

∣

∣

0 −1
−2 −3

∣

∣

∣

∣

− 4

∣

∣

∣

∣

2 3

−2 −3

∣

∣

∣

∣

+ 5

∣

∣

∣

∣

2 3

0 −1

∣

∣

∣

∣

= 1(−2)− 4(0) + 5(−2) also = −12.

3.1.re.e1d. −1
∣

∣

∣

∣

5 −6
0 6

∣

∣

∣

∣

− 2

∣

∣

∣

∣

0 −6
0 6

∣

∣

∣

∣

+ 3

∣

∣

∣

∣

0 5

0 0

∣

∣

∣

∣

= −1(30)− 2(0) + 3(0) = −30.

−1
∣

∣

∣

∣

5 −6
0 6

∣

∣

∣

∣

− 0

∣

∣

∣

∣

−2 3

0 6

∣

∣

∣

∣

+ 0

∣

∣

∣

∣

2 3

5 −6

∣

∣

∣

∣

= −1(30) + 0 + 0 also = −30.
3.1.re.e2a. 4 3.1.re.e2b. 0. 3.1.re.e2c. 21. 3.1.re.e2d. 210.
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3.2: Properties of determinants

Elementary matrices

An elementary matrix is any matrix obtained from an identity matrix by one row
operation.
Any elementary row operation is linear transformation from R

n into itself, and the elemen-
tary matrix obtained by performing the operation on the identity is the standard matrix of
that transformation. That is, if E is the elementary matrix corresponding to a particular
row operation, then EA is the matrix obtained by performing that operation on the matrix
A.
A square matrix is invertible iff it row reduces to the identity iff it is a product of elementary
matrices.

3.2.re1. Find the 3× 3 elementary matrix E corresponding to the given row operation.

a. r1 ← r1 − 2 r3 b. r2 →← r3 c. r3 ← 4 r3

Then verify that the product EA is the same as the matrix obtained from

A =





a b c
d e f
g h i





by performing the given row operation.

3.2.re1, continued. Find the determinants of the elementary matrices found above.

3.2.re2. What row operation transforms the first matrix to the second? Compute and
compare their determinants.

a. A =

∣

∣

∣

∣

−1 1
2 −4

∣

∣

∣

∣

, Ã =

∣

∣

∣

∣

−1 1
−1 2

∣

∣

∣

∣

b. B =

∣

∣

∣

∣

∣

∣

2 3 3
4 0 3
1 0 −1

∣

∣

∣

∣

∣

∣

, B̃ =

∣

∣

∣

∣

∣

∣

2 3 3
1 0 −1
4 0 3

∣

∣

∣

∣

∣

∣

c. C =

∣

∣

∣

∣

∣

∣

1 2 3
4 0 −1
0 0 1

∣

∣

∣

∣

∣

∣

, C̃ =

∣

∣

∣

∣

∣

∣

1 2 3
4 0 −1
2 4 7

∣

∣

∣

∣

∣

∣

d. D =

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

, D̃ =

∣

∣

∣

∣

a− c b− d
c d

∣

∣

∣

∣

The determinants found in 3.2.re1 and in 3.2.re2 illustrate this next fact.

The effect of row operations on the determinant 3.2.1.

1. If B is obtained from A by a row-interchange ri →← rj , then |B| = −|A|.
2. If B is obtained from A by a row replacement ri ← ri+ crj , then |B| = |A|.
3. If B is obtained from A by scaling a row ri ← cri, then |B| = c|A|.
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Calculating determinants by row reduction

The most efficient algorithm to compute the determinant of a matrix is to row-reduce it
to an upper triangular form while keeping track of changes to the determinant according
to 3.2.1 and then using 3.1.3.

3.2.re3. Calculate the determinant of the 3× 3 matrix by row reduction.

∣

∣

∣

∣

∣

∣

1 2 3
4 0 −1
5 −2 −3

∣

∣

∣

∣

∣

∣

1

=

∣

∣

∣

∣

∣

∣

1 2 3
0 −8 −13
0 −12 −18

∣

∣

∣

∣

∣

∣

2

= − 8

∣

∣

∣

∣

∣

∣

1 2 3
0 1 13

8
0 −12 −18

∣

∣

∣

∣

∣

∣

1

= −8

∣

∣

∣

∣

∣

∣

1 2 3
0 1 13

8
0 0 3

2

∣

∣

∣

∣

∣

∣

3

= −8 · 1 · 1 · 3
2
= −12

Notes:
1 Row replacements; no change to determinant.
2 Factor −8 out of row 2.
3 The determinant of a triangular matrix equals the product of its main diagonal.

3.2.re4. Calculate the determinant of the 4× 4 matrix by row reduction.

∣

∣

∣

∣

∣

∣

∣

0 1 2 −15
−1 2 2 1
3 −1 4 6
1 −1 0 0

∣

∣

∣

∣

∣

∣

∣

0

= −

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0
−1 2 2 1
3 −1 4 6
0 1 2 −15

∣

∣

∣

∣

∣

∣

∣

1

= −

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0
0 1 2 1
0 2 4 6
0 1 2 −15

∣

∣

∣

∣

∣

∣

∣

1

= −

∣

∣

∣

∣

∣

∣

∣

1 −1 0 0
0 1 2 1
0 0 0 4
0 0 0 −16

∣

∣

∣

∣

∣

∣

∣

2

= −1 · 1 · 0 · (−16) = 0

Notes:
0 Interchange; determinant changed by a sign.
1 Replacements; no change to determinant.
2 The determinant of a triangular matrix equals
the product of its main diagonal.
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Because every square matrix can be row-reduced to an upper triangular matrix, 2.3.2 and
3.1.3 imply the following.

Fact 3.2.2. A is invertible iff det(A) 6= 0.

Fact 3.2.3. det(AB) = det(A) det(B).

3.2.re5. Explain why det(A−1) = det(A)−1 if A is invertible.

3.2.re6. Find the given determinants, if

A =





1 2 0
0 3 9
0 0 2



 B =





1 0 0
2 1 0
4 5 3



 C =





1 0 1
0 1 0
−1 0 −1





a. |ATB| b. |A3| c. |CA| d. |B−1|

3.2.re7. Give an example of two matrices A and B for which |A + B| is not equal
|A|+ |B|.

Answers

3.2.re.e1a. E =







1 0 −2
0 1 0

0 0 1






; EA =







a− 2g b− 2h c− 2i

d e f

g h i






. 3.2.re.e1b.







1 0 0

0 0 1

0 1 0






;

EA =







a b c

g h i

d e f






. 3.2.re.e1c.







1 0 0

0 1 0

0 0 4






;s EA =







a b c

d e f

4g 4h 4i






. 3.2.re.e1. a. |E| = 1. b. |E| = −1.

c. |E| = 4. 3.2.re.e2a. Ã is obtained by from A by r2 ← − 1
2r2. |A| = 2; |Ã| = −1 = − 1

2 · 2. 3.2.re.e2b. B̃

obtained from B by r2 →← r3. |B| = 21; |B̃| = −21. 3.2.re.e2c. C̃ obtained from C by r3 ← r3 + 2r1;

|C| = −8 = |C̃| 3.2.re.e2d. D̃ is obtained by from D by r1 ← r1 − r2; |D| = ad − bc; |D̃| = (a − c)d −
(b − d)c = ad − bc. 3.2.re5. AA−1 = I, and so by 3.2.3, det(A) det(A−1) = det(I) = 1. Now divide both

sides by det(A) to obtain det(A−1) = 1/det(A) = (det(A))−1. 3.2.re.e6a. |AT ||B| = |A||B| = 6 · 3 = 18.

3.2.re.e6b. = |A|3 = 63, or 216. 3.2.re.e6c. By row-reduction, calculate |C| = 0. Then |CA| = |C||A| =
0 · 6 = 0. 3.2.re.e6d. |BB−1| = |I| = 1, so |B−1| = |B|−1 = 1

3
. 3.2.re7. There are many such examples.

For instance, let A =

[

1 0

0 5

]

and B =

[

1 0

0 −2

]

. Then |A+B| =
∣

∣

∣

∣

2 0

0 3

∣

∣

∣

∣

= 6, but |A|+|B| = 5+(−2) = 3.
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3.3: Cramer’s rule

The adjugate

If A is a square matrix and
Ci,j = (−1)i+j det(Ai,j)

is the (i, j)-cofactor of A, then the adjugate of A is the transpose of the matrix of cofactors
of A:

adj(A) = [Ci,j ]
T .

The adjugate has the property that

A adj(A) = det(A)I.

3.3.re1. Find the adjugate of X =





1 1 0
1 −1 −1
−1 −3 0



 and calculate X adj(X).

The matrix of cofactors of X is























∣

∣

∣

∣

−1 −1
−3 0

∣

∣

∣

∣

−
∣

∣

∣

∣

1 −1
−1 0

∣

∣

∣

∣

∣

∣

∣

∣

1 −1
−1 −3

∣

∣

∣

∣

−
∣

∣

∣

∣

1 0
−3 0

∣

∣

∣

∣

∣

∣

∣

∣

1 0
−1 0

∣

∣

∣

∣

−
∣

∣

∣

∣

1 1
−1 −3

∣

∣

∣

∣

∣

∣

∣

∣

1 0
−1 −1

∣

∣

∣

∣

−
∣

∣

∣

∣

1 0
1 −1

∣

∣

∣

∣

∣

∣

∣

∣

1 1
1 −1

∣

∣

∣

∣























=





−3 1 −4
0 0 2
−1 1 −2



 .

The adjugate is the transpose of the above:

adj(X) =





−3 0 −1
1 0 1
−4 2 −2



 .

As expected, X adj(X) =





1 1 0
1 −1 −1
−1 −3 0









−3 0 −1
1 0 1
−4 2 −2



 =





−2 0 0
0 −2 0
0 0 −2



 .

3.3.re2. Find the adjugate of the given matrix.

a.

[

4 −5
−2 3

]

b.





1 1 −2
2 1 1
−1 0 −1



 c.





1 1 1
2 5 −1
−1 −4 2



 d.







1 2 0 −4
0 2 1 1
0 0 −1 0
0 0 0 1






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Cramer’s Rule 3.3.1. If det(A) 6= 0, then

A−1 =
1

det(A)
adj(A).

Furthermore, if Ax = b, then for every 1 ≤ i ≤ n,

xi =
1

det(A)
det(Ai(b)),

where Ai(b) is the matrix obtained by replacing column i of A with the vector b.

3.3.re2, continued. Find the inverses of the matrices in 3.3.re2 or explain why they do not
exist.

3.3.re3. Find x3 and x4 if







1 2 3 1
0 1 0 −4
0 0 1 1
0 0 3 −1






x =







1
0
0
2






.
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Area and volume as determinants

It is useful to think of a vector in R
n not just as the coordinates of a point but also as an

arrow from the origin to that point.

Fact 3.3.2. If u and v are in R
2, then the area of the parallelogram with edges u and

v is the absolute value of the determinant of the 2× 2 matrix with columns u and v.

If u, v and w are in R
3, then the volume of the parallelepiped with edges u, v, and w is

the absolute value of the determinant of the 3× 3 matrix with columns u, v,w.

w

u v

v

u

det[u v] = ± area det[u v w] = ± volume

3.3.re4. Find the area of the parallelogram with the given vertices.

a. (0, 0), (3, 1), (2,−3), (5,−2) b. (7,−1), (12, 2), (3, 1), (8, 4)

3.3.re5. Find the volume of the parallelepiped with the given three parallel sides.

a. (1, 0, 1), (1, 2,−1), (3, 2, 0) b. (−1, 7, 2), (0, 4, 0), (8, 9, 10)

Answers

3.3.re.e2a.

[

3 5

2 4

]

. 3.3.re.e2b.







−1 1 3

1 −3 −5
1 −1 −1






. 3.3.re.e2c.







6 −6 −6
−3 3 3

−3 3 3






.

3.3.re.e2d.











−2 2 2 −10
0 −1 −1 1

0 0 2 0

0 0 0 −2











. 3.3.re.e2. a. 1
2

[

3 5

2 4

]

, or

[

3/2 5/2

1 2

]

. b. − 1
2







−1 1 3

1 −3 −5
1 −1 −1






.

c. Inv. does not exist. Expanding along first row, det. of the original matrix = [ 1 1 1 ]







6

−3
−3






= 0.

d. − 1
2











−2 2 2 −10
0 −1 −1 1

0 0 2 0

0 0 0 −2











. 3.3.re3. x3 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 1 1

0 1 0 −4
0 0 0 1

0 0 2 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

÷

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 1

0 1 0 −4
0 0 1 1

0 0 3 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (−2)/(−4) = 1/2.

x4 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 1

0 1 0 0

0 0 1 0

0 0 3 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

÷

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 2 3 1

0 1 0 −4
0 0 1 1

0 0 3 −1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 2/(−4) = −1/2. 3.3.re.e4a. 11. 3.3.re.e4b. 22. 3.3.re.e5a. 2.

3.3.re.e5b. 104.
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4.1: Abstract vector spaces

We use the symbol ∀ to stand for the words “for every” and the symbol ∃ to stand for the
words “there exists.” (These two symbols are called quantifiers.)

Definition 4.1.1. A vector space is a set of objects, which are called vectors, on
which are defined two operations, called vector addition and scalar multiplication,
meaning

1. ∀u and v in V , ∃ a corresponding element called u+ v ∈ V , and

2. ∀u ∈ V and ∀c ∈ R, ∃ a corresponding element called cu ∈ V .

Also, ∃ an element 0 in V with the property that

3. ∀u ∈ V , u+ 0 = u,

and ∀u ∈ V , ∃ an element −u ∈ V with the property that

4. ∀u ∈ V , u+ (−u) = 0.

Furthermore, the following properties are true ∀u,v, and w in V and ∀c and d in R.

5. u+ v = v + u

6. u+ (v +w) = (u+ v) +w

7. c(u+ v) = cu+ cv

8. (c+ d)u = cu+ du

9. c(du) = (cd)u

10. 1u = u

Fact 4.1.2. If V is a vector space, then

1. the vector 0 is unique.

Furthermore, the following are true ∀u ∈ V and ∀c ∈ R.

2. The vector −u is unique.

3. c0 = 0

4. 0u = 0

5. (−1)u = −u.

Definition 4.1.3. If H is a subset of the vector space V , then H is a subpace of V if

1. 0 ∈ H

2. ∀u and v in H, u+ v ∈ H

3. ∀u ∈ H and ∀c ∈ R, cu ∈ H

When 2 and 3 are true, we say that H is closed under vector addition and scalar multi-
plication.
If H is a subspace of V , then H is also a vector space with the same vector addition and
scalar multiplication as in V .
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4.1.re1. Prove that the following are subspaces of the given vector space.

a. Z = {0} (in any vector space) b. U = {f ∈ C[0, 1] | f(1/2) = 0}
c. W =

{[

a b
0 c

] ∣

∣

∣

∣

a, b, c ∈ R

}

4.1.re2. Prove that the following are not subspaces of the given vector space.

a. Q =

{[

x
y

] ∣

∣

∣

∣

x = 0 or y 6= 0

}

b. X = {p ∈ P |
∫ 2

0
p(x) dx ≤ 1}

See https://kunklet.people.cofc.edu/MATH203/ssproofs.pdf for some tips on writing sub-
space proofs.

Linear combination, span

Compare the following with section 1.3:

Definition 4.1.4. If u1,u2, . . .un are vectors in a vector space V and x1, . . . , xn are
scalars, then

x1u1 + x2u2 + · · ·+ xnun

is called a linear combination of u1,u2, . . .un. The collection of all linear combinations
of u1,u2, . . . ,un is called its span, written

span {u1,u2, . . . ,un} .

If span {u1,u2, . . . ,un} = V , we say that the vectors u1,u2, . . .un span V .

4.1.re3. The polynomial 5−4x+3x2 is a linear combination of the polynomials 1, x, and
x2. The span

{

1, x, x2
}

, equals P2, the vector space of all polynomials of degree at most
two. Explain why 5− 4x+ 3x2 is also a linear combination of 1, x, x2, and x3

Fact 4.1.5. If {u1,u2, . . . ,un} ⊂ V , a vector space, then span {u1,u2, . . . ,un} is a
subspace of V .

4.1.re4. Prove that the set is a subspace by showing it to be the span of a set of vectors.

a.W =

{[

a b
0 c

] ∣

∣

∣

∣

a, b, c ∈ R

}

b. Ω =

{

[

−x+ 2y + 3z
y − z

]

∣

∣

∣

∣

∣

x, y, z ∈ R

}
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Answers

4.1.re.e1a. 0 ∈ Z. Since Z contains only one element, to show its closure under addition and multiplica-

tion, we need only note 0 + 0 = 0 ∈ Z, and ∀c ∈ R, c0 = 0 ∈ Z. 4.1.re.e1b. In C[0, 1] (the vector space

of all functions that are continuous on the interval [0, 1]), 0 is the function given by the rule 0(x) = 0 for

all x. Therefore 0(1/2) = 0. If f and g are in U and c is any real number, then f + g is also in U because

(f+g)(1/2) = f(1/2)+g(1/2) = 0+0 = 0, and cf is in U because (cf)(1/2) = cf(1/2) = c0 = 0. 4.1.re.e1c.

(W ⊂ M2×2 is the set of all 2 × 2 upper triangular matrices.)

[

a b

0 c

]

=

[

0 0

0 0

]

= 0 when a = b =

c = 0. For any

[

a b

0 c

]

and

[

d e

0 f

]

in W , their sum

[

a+ d b+ e

0 c+ f

]

is also in W ; additionally, if g is any

scalar, then g

[

a b

0 c

]

=

[

ga gb

0 gc

]

is also in W . 4.1.re.e2a.

[

1

1

]

and

[

1

−1

]

are in Q, since their second

coordinates are not zero, but their sum

[

2

0

]

is not in Q because its second coordinate is zero and its first

coordinate is not. 4.1.re.e2b. The polynomial x is in X, since
∫ 2

0
x dx = 1

2
x2|20 = 1. But the scalar multi-

ple 4x in not in X because
∫ 2

0
4x dx = 4

∫ 1

0
x dx = 4 6≤ 1. 4.1.re3. Because it equals 5 − 4x + 3x2 + 0x3.

4.1.re.e4a. W is a vector space, since it equals span

{[

1 0

0 0

]

,

[

0 1

0 0

]

,

[

0 0

0 1

]}

.

4.1.re.e4b.

[−x+ 2y + 3z

y − z

]

= x

[−1
0

]

+ y

[

2

1

]

+ z

[

3

−1

]

, so Ω = span

{[−1
0

]

,

[

2

1

]

,

[

3

−1

]}

is a subspace of

R3.



MATH 203 review: 4.2 http://kunklet.people.cofc.edu/ 9:06 24 April 2023 page 50

4.2: Linear transformations, column space, row space, and null space.

If V and W are vector spaces, we sometimes denote their zero-vectors as 0V and 0W .

Definition 4.2.1. A transformation T : V → W from a vector space V to a vector
space W is linear if, ∀u and v in V and ∀c ∈ R,

T (u+ v) = T (u) + T (v)

T (cu) = c T (u)

The kernel or null space of T is the set

kerT = {v ∈ V | T (v) = 0W } ⊂ V

and the range of T is the set

ranT = {T (v) | v ∈ V } ⊂W.

4.2.re1. Let T : P2 → R
2 : p(t) 7→

[

p(0)
p′(0)

]

.

[

1
−2

]

∈ ranT because T (1− 2t) =

[

1
−2

]

.

q(t) = 5t2 is in kerT because both q(t) an q′(t) = 10t equal zero at t = 0.
Prove that T maps P2 onto R

2 by finding a polynomial r(t) (depending on a and b) for

which T (r(t)) =

[

a
b

]

.

Fact 4.2.2. If T : V →W is linear, then

a. T (0V ) = 0W

b. kerT is a subspace of V .

c. ranT is a subspace of W .

4.2.re2. Prove the three statements in 4.2.2.

Hints: a: start with 0V = 0V + 0V . You’ll use part a to prove b&c. b: see the proof of
Thm.2 in 4.2 of the text. c: every element in ranT can be written T (u) for some u ∈ V .
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Definition 4.2.3. If A ∈Mm×n, then its null space is the set

NulA = {x ∈ R
n | Ax = 0 } ⊂ R

n.

Its column space and row space are the spans of its columns and rows, respectively:

ColA = {Au | u ∈ R
n } ⊂ R

m

RowA = {ATv | v ∈ R
m } ⊂ R

n

NulA and ColA are the null space and range, respectively, of the linear transformation
T : Rn → R

m : x 7→ Ax, and RowA is the column space of AT .

4.2.re3. Let C =





1 0 2
2 1 5
−1 1 −1



. Then





2
2
−1



 is in NulC because C





2
2
−1



 = 0, and





3
6
−3



 is in ColC because it equals C





1
−1
1



. Show that





3
8
1



 is not in ColC by showing

that the system Cx =





3
8
1



 is inconsistent.

4.2.re4. We can express the null space of

B =





1 0 −1 3 3
2 1 0 7 7
−1 1 3 −2 −1





as a span of vectors in R
5 by first reducing B to its reduced row echelon form:

B ∼





1 0 −1 3 0
0 1 2 1 0
0 0 0 0 1





In parametric vector form, the typical element of NulB is

x =











x1

x2

x3

x4

x5











=











x3 − 3x4

−2x3 − x4

x3

x4

0











= x3











1
−2
1
0
0











+ x4











−3
−1
0
1
0











.

Therefore

NulB = span





























1
−2
1
0
0











,











−3
−1
0
1
0




























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4.2.re5. Express the null space of the given matrix as a span of vectors.

a.





0 1 −3 2 −2
1 2 −1 0 0
1 3 −4 4 −2



 b.





1 −1 2 5
1 −1 4 9
−2 2 −3 −8



 c.







1 −1 0 1 3
2 −2 1 4 6
0 0 −1 −2 0
1 −1 0 1 3







4.2.re6. Either express the given set as the null space or column space of a matrix or
determine that it is not subspace.

a.











a− 2b
3a+ 4b
−2b





∣

∣

∣

∣

∣

a, b ∈ R







b.











x+ y − 3z
y + 2u+ v

x− v





∣

∣

∣

∣

∣

u, v, x, y, z ∈ R







c.

















a
b
c
d







∣

∣

∣

∣

∣

2a− 4c = 0

3b+ 9d = 0











d.

















a
b
c
d







∣

∣

∣

∣

∣

2a− 4c = 1

3b+ 9d = 0











e.





























a
b
c
d
e











∣

∣

∣

∣

∣

2a = e+ 4c

7b+ e = 3d+ a



















Answers

4.2.re1. T (a + bt) = [ a b ]
T
. 4.2.re2. a. T (0V ) = T (0V + 0V ) = T (0V ) + T (0V ). Now subtract T (0V )

from the left and right sides to obtain 0W = T (0V ). b. By a., 0V ∈ kerT . To show kerT is closed under

addition, suppose T (u) = T (v) = 0W . Then T (u+v) = T (u)+T (v) = 0W +0W = 0W . To show kerT is

closed under scalar multiplication, suppose T (u) = 0W and c ∈ R. Then T (cu) = cT (u) = c0W = 0W . c.

By a., 0W ∈ ranT . To show that ranT is closed under vector addition, note that if T (u) and T (v) are

elements of ranT , then their sum T (u) + T (v) = T (u + v) is also in ranT . To show that ranT is closed

under scalar multiplication, note that if T (u) is any element of ranT and c is any scalar, then cT (u) =

T (cu) is also in ranT . 4.2.re3. The augmented matrix







1 0 2 3

2 1 5 8

−1 1 −1 1






reduces to







1 0 2 0

0 1 1 0

0 0 0 1






.

System is inconsistent because there’s pivot in the augmented column.

4.2.re.e5a. rref =







1 0 5 0 4

0 1 −3 0 −2
0 0 0 1 0






. null space = span









































−5
3

1

0

0















,















−4
2

0

0

1









































. 4.2.re.e5b. null space =

span





























1

1

0

0











,











−1
−2
0

1





























. 4.2.re.e5c. null space = span









































1

1

0

0

0















,















−1
−2
0

1

0















,















−3
0

0

0

1









































.
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4.2.re.e6a. span

















1

3

0






,







−2
4

−2

















= Col







1 −2
3 4

0 −2






. 4.2.re.e6b. Col







0 0 1 1 −3
2 1 0 1 0

0 −1 1 0 0






.

4.2.re.e6c. Nul

[

2 0 −4 0

0 3 0 9

]

. 4.2.re.e6d. The given set does not include 0 and so is not a subspace.

4.2.re.e6e. Nul

[

2 0 −4 0 −1
−1 7 0 −3 1

]

.
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4.3: Linear independence, bases.

Definition 4.3.1. A set of vectors {v1,v2, . . . ,vn} in a vector space V is linearly

independent if the only solution to

(4.3.2) x1v1 + x2v2 + · · ·+ xnvn = 0 (in V )

is x = 0 (in R
n). A set of vectors is linearly dependent if it is not linearly independent.

If (4.3.2) is true for some nonzero x, that equation is called a dependence relation for
{v1,v2, . . . ,vn}.

Fact 4.3.3. A set of two or more vectors is linearly dependent iff some vector in that
set is a linear combination of the others.

See 1.7.re1, where we proved this statement for vectors in R
n.

When V 6= R
n, deciding the linear dependence or independence of a set of vectors requires

us to determine if (4.3.2) has a nontrivial solution x, often by finding an equivalent matrix
system (and sometimes by some clever analysis).

4.3.re1. Determine whether the given set of vectors is linearly independent.

a.

{[

1 0 0
0 1 0

]

,

[

0 0 1
0 −1 2

]

,

[

1 1 0
1 0 0

]}

⊂M2×3.

b. {1, t, t2} ⊂ P.

c. {t− 1, t+ 1, t} ⊂ P.

d. {1, t− 1, (t− 1)(t− 2)} ⊂ P.

e. {1, sin2 t, cos2 t, cos3 t} ⊂ C(−∞,∞).

Definition 4.3.4. A set B = {v1,v2, . . . ,vn} ⊂ V is a basis for V if

1. B spans V

2. B is linearly independent.

4.3.re2. {1, t, t2} spans P2, since every element of P2 has the form at2 + bt+ c. As seen in
4.3.re1, {1, t, t2} is linearly independent. Therefore {1, t, t2} is a basis for P2.

4.3.re3. Since the n× n identity matrix I has a pivot in every row and every column, its
columns {e1, e2, . . . , en} are linearly independent and span R

n. Therefore {e1, e2, . . . , en}
is a basis for Rn.

Fact 4.3.5. An n× n matrix A is invertible iff its columns form a basis for Rn.
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Bases for the null, column, and row spaces of a matrix

Fact 4.3.6. If A and B are row equivalent, then RowA = RowB and NulA = NulB.

4.3.re4. It is important to note that row operations may change the column space of a

matrix. For example,

[

1
1

]

∼
[

1
0

]

but

Col

[

1
1

]

=

{[

x
x

] ∣

∣

∣

∣

x ∈ R

}

,

the set of vectors in R
2 whose two components are equal, while

Col

[

1
0

]

=

{[

x
0

] ∣

∣

∣

∣

x ∈ R

}

,

the set of vectors in R
2 whose second component are zero.

4.2.re4, continued. The spanning set for NulB found earlier,

(4.3.7)





























1
−2
1
0
0











,











−3
−1
0
1
0





























is linearly independent. To see this, recall that if x is in this span, then

x = x3











1
−2
1
0
0











+ x4











−3
−1
0
1
0











.

If x equals 0, then x3 and x4, being components of x, must both be zero. Therefore, the
set (4.3.7) is a basis for the null space of B.
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Fact 4.3.8. Suppose A ∼ B, where B is in row echelon form.

1. The pivot columns of A are a basis for ColA.

2. The pivot rows of B are a basis for RowA.

3. The spanning set for NulA produced by writing the solutions to Ax = 0

in parametric vector form is a basis for NulA.

4.3.re5. Find bases for the null, column, and row spaces of the given matrix. For which of
these m× n matrices is the column space all of Rm?

a.





1 2 5 3
1 2 5 3
−1 −1 −3 −6



 b.





1 0 −5 3
2 1 −9 8
−1 1 6 −1



 c.





1 2 −3 1 7
1 4 −7 4 13
1 4 −7 5 13





d.





1 2 −1 −1 −2
2 5 −4 0 −3
−1 −1 −1 5 3



 e.







1 −1 2 15 3
2 −2 5 33 6
0 0 −1 −3 1
1 −1 2 15 4







Spanning set theorem 4.3.9. If S is a subset (other than {0}) of a vector space, then
some subset of S is a basis for spanS.

For example, if S were a finite set of vectors in R
m, one could find a basis for their span by

forming the matrix with the elements of S for its columns and choosing the pivot columns
of that matrix.

4.3.re6. Find a basis for span











1
1
−1



 ,





2
2
−1



 ,





5
5
−3



 ,





3
3
−6











.

4.3.re7. Find a basis for span {1, t− 1, t+ 1, (t− 1)(t− 2)}.

Answers

4.3.re.e1a. a

[

1 0 0

0 1 0

]

+ b

[

0 0 1

0 −1 2

]

+ c

[

1 1 0

0 0 0

]

=

[

a 0 0

0 a 0

]

+

[

0 0 b

0 −b 2b

]

+

[

c c 0

0 0 0

]

=

[

a+ c c b

0 a− b 2b

]

. If this = 0, row1, columns 2,3, and 1 imply a = b = c = 0. The matrices are lin-

early dependent. 4.3.re.e1b. Suppose a + bt + ct2 = 0. Evaluating at t = 0, 1, and 2 yields the system of

equations a = 0, a + b + c = 0, a + 2b + 4c = 0; in aug’d matrix form,







1 0 0 0

1 1 1 0

1 2 4 0






∼







1 0 0 0

0 1 0 0

0 0 1 0






=⇒

a = b = c = 0. The polynomials are linearly independent. 4.3.re.e1c. Note 1
2 (t − 1) + 1

2 (t + 1) = t. Since

one polynomial is a linear combination of the other two, these polynomials are linearly dependent.

4.3.re.e1d. Suppose a + b(t − 1) + c(t − 1)(t − 2) = 0. Evaluating at t = 1, 2, and 3 yields the system of

equations a = 0, a+ b = 0, a+ 2b+ 2c = 0. The matrix of coefficients is lower triangular with a nonzero di-

agonal, hence invertible. Therefore the only solution to this homogeneous system is a = b = c = 0. Polys
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are linearly independent. 4.3.re.e1e. sin2 t+cos2 t−1 = 0 is true for all t, so the functions are linearly de-

pendent. 4.3.re.e5a. null sp bs =





























−1
−2
1

0











,











−9
3

0

1





























. col sp bs =

















1

1

−1






,







2

2

−1

















.

row sp bs =





























1

0

1

9











T

,











0

1

2

−3











T

















. col sp 6= R3. 4.3.re.e5b. null sp bs =





























5

−1
1

0











,











−3
−2
0

1





























.

col sp bs =

















1

2

−1






,







0

1

1

















. row sp bs =





























1

0

−5
3











T

,











0

1

1

2











T

















. col sp 6= R3. 4.3.re.e5c. null sp bs =









































−1
2

1

0

0















,















−1
−3
0

0

1









































. col sp bs =

















1

1

1






,







2

4

4






,







1

4

5

















. row sp bs =













































1

0

1

0

1















T

,















0

1

−2
0

3















T

,















0

0

0

1

0















T






























. col sp =

R3. 4.3.re.e5d. null sp bs =









































−3
2

1

0

0















,















4

−1
0

0

1









































. col sp bs =

















1

2

−1






,







2

5

−1






,







−1
0

5

















.

row sp bs =













































1

0

3

0

−4















T

,















0

1

−2
0

1















T

,















0

0

0

1

0















T






























. col sp = R3. 4.3.re.e5e. null sp bs =









































1

1

0

0

0















,















−9
−3
0

1

0









































.

col sp bs =





























1

2

0

1











,











2

5

−1
2











,











3

6

1

4





























. row sp bs =













































1

−1
0

9

0















T

,















0

0

1

3

0















T

,















0

0

0

0

1















T






























. col sp 6= R4.

4.3.re6. Same as the column space basis found in 4.3.re5a. 4.3.re7. Omit t+1 = (t−1)+2(1). Remaining

polynomials {1, t− 1, (t− 1)(t− 2)} are linearly independent—see 4.3.re1d.
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4.4: The coordinate map

Fact 4.4.1. If B = {b1,b2, . . . ,bn} is a basis for the vector space V , then each v ∈ V
can be written uniquely as a linear combination of the elements of B:

v = x1b1 + x2b2 + · · ·xnbn

The scalars x1, x2, . . . , xn are called the coordinates of v relative to B. The vector of
these coordinates is called the coordinate vector of v and is denoted [v]B:

[v]B =









x1

x2
...
xn









The coordinate map

V → R
n : v 7→ [v]B

is a linear, one-to-one map from V onto R
n.

4.4.re1. As seen in 4.3.re2, B = {1, t, t2} is a basis for P2. The coordinate vector of the

polynomial (t− 3)2 relative to B is [ 9 −6 1 ]
T
, since (t− 3)2 can be written 9− 6t+ t2.

Observe that this is the only linear combination of {1, t, t2} which adds up to (t− 3)2, as
promised by 4.4.1.

4.4.re2. Let B = {1, t− 1, (t− 1)2}.
a.∗ Prove that B is a basis for P2.

b. Find p(t) ∈ P2 is [p(t)]B = [ 2 −1 3 ]
T
.

c. Find [q(t)]B ∈ R
3 if q(t) = (t− 2)(t+ 3).

If B = {b1,b2, . . . ,bp} is a basis for R
n, then the matrix A = [b1 b2 · · · bp] has a

pivot in every row and column. Consequently, p must equal n and A is invertible. The
coordinates of a vector x in R

n relative to B is the vector [x]B that satisfies A[x]B = x,
that is, [x]B = A−1x. Since this coordinate map from R

n into R
n is obtained by matrix

multiplication, 1.8.1 tells us that it is a linear transformation, as promised by 4.4.1. Fact
4.4.1 is also consistent with the invertible matrix theorem 2.3.1, which tells us that, since
A−1 is invertible , the transformation x 7→ A−1x is one-to-one and onto.

4.4.re3. Determine whether the given set is a basis for Rn; if it is, find the coordinates of
the given vector relative to B

a.











1
4
3



 ,





2
9
6



 ,





−1
−3
−4











,





3
11
11



 b.

















1
0
−1
0






,







1
−1
−2
−1






,







3
0
−4
0






,







0
0
2
1

















,







1
−1
−2
−1






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c.











1
1
1



 ,





1
2
3



 ,





−1
0
1











,





1
2
3



 d.

















1
0
−1
0






,







0
−1
−2
−1






,







0
0
−4
0






,







0
0
0
1

















,







−2
0
−10
−1







4.4.re4. Use problems 4.4.29 and 4.4.30 in the text to answer the following.

a. Determine whether the polynomials 1 + t + t2, 1 + 2t + 3t2, and −1 + t2 are linearly
independent by considering their coordinate vectors relative to the standard basis for P2.

b. Determine whether 5t+ 8t2 − 3t3 is in span{1− t3, 2 + t+ t3, 3t+ 4t2} by considering
coordinate vectors.

Answers

4.4.re.e2a. The three monomials {1, t, t2} are in the span of B because

1 ∈ spanB t = (t− 1) + 1 ∈ spanB t2 = (t− 1)2 + 2(t− 1) + 1 ∈ spanB.

Therefore any linear combination of {1, t, t2} is also in spanB, and so B is a spanning set for P2. Now

suppose that

(4.4.2) a+ b(t− 1) + c(t− 1)2 = 0

(that is, a+ b(t− 1) + c(t− 1)2 = 0 for all values of t). Evaluating (4.4.2) at t = 1 implies a = 0. Now take

the derivative of (4.4.2) and evaluate it at t = 1:

b+ 2c(t− 1) = 0 =⇒ b+ 2c · 0 = 0 =⇒ b = 0.

Now take the second derivative of (4.4.2):

2c = 0 =⇒ c = 0.

B is linearly independent, since the only solution to (4.4.2) is a = b = c = 0. Therefore B is a basis, i.e.,

a linearly independent spanning set, for P2. 4.4.re.e2b. p(t) = 2 · 1− 1(t− 1)+ 3(t− 1)2. 4.4.re.e2c. The

coordinates of q(t) are the scalars a, b, c satisfying

(4.4.3) (t− 2)(t+ 3) = a+ b(t− 1) + c(t− 1)2.

Evaluate (4.4.3) at t = 1 to obtain −4 = a. Now evaluate (4.4.3) at two other t-values, say t = 0 and

t = 2:
−6 = −4− b+ c

0 = −4 + b+ c
, or

−2 = −b+ c

4 = b+ c

The solution of this 2 × 2 system is b = 3, c = 1. Therefore [q(t)]B =







−4
3

1






. 4.4.re.e3a. basis for R3;

coord. = [−1 1 −2 ]T . 4.4.re.e3b. basis for R4; coord. = [ 0 1 0 0 ]
T
. 4.4.re.e3c. not a basis; co-

ordinates are not defined. 4.4.re.e3d. basis for R4; coord. = [−2 0 3 −1 ]T . 4.4.re.e4a. Their coor-

dinate vectors are the same three seen in 4.4.re3c. Since these vectors are linearly dependent, so are the
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polynomials, by problem 4.4.29. 4.4.re.e4b. The coordinate vectors (relative to the standard basis for

P4) of the four polynomials are [0 5 8 −3]T , [1 0 0 −1]T , [2 1 0 1]T , and [0 3 4 0]T . Row reduce

the augmented matrix











1 2 0 0

0 1 3 5

0 0 4 8

−1 1 0 −3











to determine that the corresponding linear system is consist-

ent. Since [0 5 8 −3]T is in the span of the other three vectors, problem 4.4.30 implies that 5t+8t2−3t3
lies in span{1− t3, 2 + t+ t3, 3t+ 4t2}.



MATH 203 review: 4.5 http://kunklet.people.cofc.edu/ 9:06 24 April 2023 page 61

4.5: Dimension

Fact 4.5.1. Any two bases of a vector space V must have the same number of elements,
called the dimension of V , written dimV .

4.5.re1. dimR
n = n, since any basis for Rn must contain a pivot in every row and column

and therefore must have exactly n elements.

4.5.re2. Find the dimension of the vector space

span

















1
1
−2
7













2
3
−4
18













−1
0
2
−3

















The vector space in question is the same as the column space of

F =







1 2 −1
1 3 0
−2 −4 2
7 18 −3






∼







1 2 −1
0 1 1
0 0 0
0 0 0






.

Since the pivot columns of F form a basis for ColF , the dimension of ColF = 2.

4.5.re3. Find the dimension of the given vector space. See 4.3.re5.

a. span











1
2
−1



 ,





2
5
−1



 ,





1
4
1



 ,





−2
−3
3



 ,





−1
0
5











b. span











1
1
1



 ,





2
4
4



 ,





−3
−7
−7



 ,





1
4
5



 ,





7
13
13











c. span

















1
2
0
1






,







−1
−2
0
−1






,







2
5
−1
2






,







15
33
−3
15






,







3
6
1
4

















d. span











1
1
−1



 ,





2
2
−1



 ,





5
5
−3



 ,





3
3
−6











The next result follows from 4.3.8. The first part is illustrated in 4.5.re2 and 4.5.re3.

Fact 4.5.2. If A is any matrix, then

1. dimColA = dimRowA = the number of pivot columns in A, and

2. dimNulA = the number of non-pivot columns in A.

The rank of a matrix is the dimension of its column space, and the nullity of a matrix is
the dimension of its null space.

Rank-Nullity theorem 4.5.3. For any matrix A,

rankA+ nullityA = the number of columns of A
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Although it has no basis, the vector space {0} is said to be 0-dimensional. If V has a basis
consisting of some finite number of vectors, then V is said to be finite-dimensional;
otherwise, V is infinite-dimensional.

4.5.re4. The set of all monomial functions {1, t, t2, t3, t4, . . .} is a basis for the vector space
P of all polynomials. Therefore P is infinite-dimensional.

Fact 4.5.4. If H is a subspace of the vector space V , then dimH ≤ dimV .

4.5.re5. Since dimR
n = n, all subspaces of Rn must have dimension ≤ n.

In R
2, the only 0-dimensional subspace is {(0, 0)}, the one-dimensional subspaces (the

spans of one nonzero vector) are lines through the origin, and the only 2-dimensional
subspace is R2 itself.
In R

3, the only 0-dimensional subspace is {(0, 0, 0)}, the one-dimensional subspaces (the
spans of one nonzero vector) are lines through the origin, the 2-dimensional subspaces
(spans of two linearly independent vectors) are planes through the origin, and the only
3-dimensional subspace is R3 itself.
(See also Examples 2 and 4 of section 4.5 in the text.)

Fact 4.5.5. Suppose V is a finite-dimensional vector space.

1. Any spanning set for V can, by the removal of some elements, be reduced to a basis
for V .

2. Any linearly independent set in V can, with some additional elements, be enlarged
to a basis for V .

Part 1 of 4.5.5 is a restatement of the Spanning Set Theorem 4.3.9.

4.5.re6. The vectors










1
0
−1



 ,





0
1
−1











are linearly independent, since neither is a scalar multiple of the other. To expand this set
to a basis for R3, we just have to add a vector not in the span of the two original vectors.
Either pick a third vector at random and test if the three are linearly independent, or add
the three standard basis vectors for R3 and row-reduce to find a basis for the column space
R

3 of

A =





1 0 1 0 0
0 1 0 1 0
−1 −1 0 0 1



 ∼





1 0 1 0 0
0 1 0 1 0
0 0 1 1 1



 .

The pivots columns of A










1
0
−1



 ,





0
1
−1



 ,





1
0
0











are a basis for R3.
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4.5.re7. Find a basis for R4 that contains the two (linearly independent) vectors







1
1
0
0






,







1
−1
0
1







See also examples 4.3.re6 and 4.3.re7.

The next fact is a useful consequence of 4.5.5.

Basis Theorem 4.5.6. If B is a subset of a finite-dimensional vector space V , if
#B = dimV , and if B either spans V or is linearly independent, then B must be a basis
for V .

That is, if B has the correct number of elements to be a basis for V , then in order to test
if B is a basis for V , we need only check that it spans V or is linearly independent.

4.5.re8. Use 4.5.6 to determine whether the given sets are bases for P3. See also 4.4.re4.

a. {1, 2 + t, 3 + 2t+ t2, 4 + 3t+ 2t+ t3} b. {1 + t2, 1− t2, t+ t3, t− t3}

Answers

4.5.re.e3a. 3. 4.5.re.e3b. 3. 4.5.re.e3c. 3. 4.5.re.e3d. 2. 4.5.re7. There are many correct answers.

Here’s one: {[1 1 0 0]T , [1 − 1 0 1]T , [1 0 0 0]T , [0 0 1 0]T }. 4.5.re.e8a. The matrix formed by

the coordinate vectors










1 2 3 4

0 1 2 3

0 0 1 2

0 0 0 1











has a pivot in every row, so the polynomials span P3. Since dimP3 = 4, these four polynomials must be

a basis for P3. 4.5.re.e8b. Row-reduce the matrix formed by the coordinate vectors:











1 1 0 0

0 0 1 1

1 −1 0 0

0 0 1 −1











∼











1 1 0 0

0 −2 0 0

0 0 1 1

0 0 0 −2











There’s a pivot in every column, so the four polynomials are linearly independent. Since dimP3 = 4,

these four polynomials must be a basis for P3.
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5.1: Eigenvalues and eigenvectors

Definition 5.1.1. If A is a square matrix, and λ is an eigenvalue of A if any of the
following equivalent statements are true.

1. Ax = λx for some vector x 6= 0.

2. (A− λI)x = 0 for some vector x 6= 0.

3. The matrix (A− λI) is singular, that is, non-invertible.

4. det(A− λI) = 0.

In case of 1 or 2, x is said to be an eigenvector of A corresponding to λ.
Equation 4 is called the characteristic equation of A.
For any given eigenvalue λ, the eigenspace of A corresp. to λ is Nul(A − λI). This
eigenspace consists of all eigenvectors of A corresp. to λ (together with 0, which doesn’t
count as an eigenvector).
Confirming that a scalar λ is an eigenvalue of a matrix A requires showing that A − λI
is singular. Confirming that a given vector is an eigenvector is simply a matter of matrix
multiplication.

5.1.re1. Determine whether the given scalar is an eigenvalue of B =





4 1 −6
2 −7 −8
1 1 −3





a. 1 b. 3

a. To find out if 1 is an eigenvalue, row-reduce B − I:





4 1 −6
2 −7 −8
1 1 −3



−





1 0 0
0 1 0
0 0 1



 =





3 1 −6
2 −8 −8
1 1 −4



 ∼





1 1 −4
3 1 −6
2 −8 −8





∼





1 1 −4
0 −2 6
0 −10 0



 ∼





1 1 −4
0 −2 6
0 0 −30





Because B − I is invertible, 1 is not an eigenvalue of B.
b. The scalar 3 is an eigenvalue of B since

(5.1.2) B − 3I =





4 1 −6
2 −7 −8
1 1 −3



−





3 0 0
0 3 0
0 0 3



 =





1 1 −6
2 10 −8
1 1 −6



 ∼





1 1 −6
2 10 −8
0 0 0





is singular.

5.1.re1, continued. Determine whether the given vector is an eigenvector of B.
c. [ 1 −2 1 ]

T
d. [ 2 1 0 ]

T

c. Multiply

Bx =





4 1 −6
2 −7 −8
1 1 −3









1
−2
1



 =





−4
8
−4



 = −4





1
−2
1







MATH 203 review: 5.1 http://kunklet.people.cofc.edu/ 9:06 24 April 2023 page 65

and we see that [ 1 −2 1 ]
T
is an eigenvector of B corresp. to −4.

d. Since the product

Bx =





4 1 −6
2 −7 −8
1 1 −3









2
1
0



 =





9
−3
3





is not a scalar multiple of [ 2 1 0 ]
T
, this vector is not an eigenvector of B.

The basis of an eigenspace

Since an eigenspace (of one matrix) is a nullspace (of another), we can find a basis for an
eigenspace of a given matrix and a given eigenvalue we did as in section 4.3.

5.1.re1, continued. The eigenspace of B corresp. to 3 is the null space of

(B − 3I) =





1 1 −6
2 10 −8
1 1 −6



 ∼





1 1 −6
2 10 −8
0 0 0



 ∼





1 1 −6
0 8 4
0 0 0





∼





1 1 −6
0 1 1

2
0 0 0



 ∼





1 0 −13
2

0 1 1
2

0 0 0



 .

For x to belong to the null space of B − 3I, we need x1 = 13
2 x3 and x2 = −1

2x3, where x3

is free. Therefore the null space is the span of the vector [ 13
2 −1

2 1 ]
T
, and this single

vector forms a basis for the eigenspace of B corresp. to 3. So does [ 13 −1 2 ]
T
, or any

nonzero scalar multiple of [ 13
2
−1

2
1 ]

T
.

5.1.re2. Find a basis for the eigenspace for U =





−7 −9 −6
14 16 10
−12 −12 −7



 corresponding to the

given eigenvalue.

a. 2 b. 1 c. −1

5.1.re2, continued. Find a basis for the eigenspace for W =





0 0 3
−9 3 9
0 0 3



 corresponding to

the given eigenvalue.

d. 3 e. 0

Answers

5.1.re.e2a. {[ 1 −1 0 ]
T }. 5.1.re.e2b. {[ 0 2 −3 ]T }. 5.1.re.e2c. {[−1 2 −2 ]T }.

5.1.re.e2d. {[ 1 1 1 ]
T
, [ 1 0 1 ]

T }. 5.1.re.e2e. {[ 1 3 0 ]
T }.
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5.2: The characteristic polynomial and equation

If A is an n×nmatrix, then det(A−λI) is a polynomial of degree n called its characteristic
polynomial. The eigenvalues of A are the solutions to the characteristic equation

det(A− λI) = 0.

5.2.re1. Find the characteristic polynomial and eigenvalues of the given matrix.

a.

[

−9 4
−20 9

]

b.

[

2 3
12 2

]

c.

[

12 2
2 3

]

d.





1 1 −2
−2 −2 2
0 0 −1



 e.





2 1 −2
0 3 2
0 0 4





The examples seen in 5.2.re1 illustrate these important facts.

Fact 5.2.1.

1. The eigenvalues of a triangular matrix are its diagonal elements.

2. A (square) matrix is singular iff zero is one of its eigenvalues.

3. Row operations can change the eigenvalues of a matrix.

That is, if B is obtained by a row operation on A, you should not expect A and B to have
the same eigenvalues.

The multiplicities of an eigenvalue

The algebraic multiplicity of an eigenvalue is its multiplicity as a zero of the character-
istic polynomial. The geometric multiplicity of an eigenvalue is the dimension of the
associated eigenspace. Our text does not use the term “geometric multiplicity.”

5.2.re2. Let E =





3 0 0
7 10 −7
14 14 −11



. The characteristic polynomial of E is (3−λ)2(−4−λ),

so λ = 3 is an eigenvalue of algebraic multiplicity 2, and λ = −4 is an eigenvalue of algebraic
multiplicity 1. The geometric multiplicity of each is found by row-reducing E − λI until
its pivot locations become clear.
The geometric multiplicity of λ = 3 is 2, that is, the number of non-pivot columns of

E − 3I =





0 0 0
7 7 −7
14 14 −14



 ∼





1 1 −1
0 0 0
0 0 0



 .

λ = −4 has geometric multiplicity 1, since

E + 4I =





7 0 0
7 14 −7
14 14 −7



 ∼





1 0 0
0 2 −1
0 0 0




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has only one non-pivot column.

5.2.re3. The characteristic polynomial of F =

[

5 −1
0 5

]

is (5−λ)2, so λ = 5 has algebraic

multiplicity 2. Since

F − 5I =

[

0 −1
0 0

]

has only non-pivot column, λ = 5 has geometric multiplicity 1.

Fact 5.2.2. If λ is an eigenvalue of a matrix, then

1 ≤ geometric multiplicity of λ ≤ algebraic multiplicity of λ

Similarity

Definition 5.2.3. The n× n matrices A and B are said to be similar if

A = PBP−1

for some invertible matrix P .

Fact 5.2.4.

If A is similar to B, then

1. An and Bn are similar for all integers n, and

2. A and B have the same

a. determinant,
b. characteristic polynomial, and, therefore,
c. eigenvalues.

Furthermore,

3. if A is similar to B and B is similar to C, then A is similar to C.

The converse to 5.2.4.2 is false; if two matrices has the same characteristic polynomial, it
is not necessary that the matrices be similar.

5.2.re4. (1− λ)2 is the characteristic polynomial of both

[

1 2
0 1

]

and

[

1 0
0 1

]

, but these

two matrices are not similar, since the identity matrix is similar only to itself.

Answers

5.2.re.e1a. 1 − λ2, λ = ±1. 5.2.re.e1b. (2 − λ)2 − 36, λ = −4, 8. 5.2.re.e1c. λ2 − 15λ + 32, λ = 15
2
±

√
97
2

.

5.2.re.e1d. −λ(λ+ 1)2, λ = 0,−1. 5.2.re.e1e. (2− λ)(3− λ)(4− λ), λ = 2, 3, 4.
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5.3: Diagonalization

Definition 5.3.1. A square matrix A is diagonalizable if it is similar to a diagonal
matrix D:

(5.3.2) A = PDP−1

Fact 5.3.3. The n × n matrix A is diagonalizable iff R
n has a basis consisting of

eigenvectors of A. In that case, the columns of P in (5.3.2) are eigenvectors of A and the
diagonal elements of D are the associated eigenvalues.

5.3.re1. The matrix U =





−7 −9 −6
14 16 10
−12 −12 −7



 seen in 5.1.re2 satisfies

U





1
−1
0



 = 2





1
−1
0



 U





0
2
−3



 = 1





0
2
−3



 U





−1
2
−2



 = −1





−1
2
−2





and therefore

(5.3.4) U





1 0 −1
−1 2 2
0 −3 −2



 =





1 0 −1
−1 2 2
0 −3 −2









2 0 0
0 1 0
0 0 −1





The matrix formed by these three eigenvectors is invertible, since its row echelon form has
a pivot in every row and column:





1 0 −1
−1 2 2
0 −3 −2



 ∼





1 0 −1
0 2 1
0 0 −1

2





Therefore (5.3.4) implies

U =





1 0 −1
−1 2 2
0 −3 −2









2 0 0
0 1 0
0 0 −1









1 0 −1
−1 2 2
0 −3 −2





−1
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Fact 5.3.5. If λ1, λ2, . . . , λp are p different eigenvalues of A, and if v1,v2, . . . ,vp are
eigenvectors of A corresponding to these eigenvalues, than {v1,v2, . . . ,vp} is linearly in-
dependent.
More generally, if B1, B2, . . .Bp are bases for the eigenspaces of λ1, λ2, . . . , λp, then B1 ∪
B2∪· · ·∪Bp (that is, the collection of all the vectors in all the bases) is linearly independent.

Fact 5.3.6. The n× n matrix A is diagonalizable iff the geometric multiplicity of every
eigenvalue equals its algebraic multiplicity.

5.3.re2. As seen in 5.1.re2,





1
1
1



 and





1
3
0



 are eigenvectors of W =





0 0 3
−9 3 9
0 0 3





corresponding to the eigenvalues 3 an 0. Fact 5.3.5 says that these two vectors must
linearly independent. Furthermore, since











1
1
1



 ,





1
0
1











and











1
3
0











are bases for the eigenspaces of W corresponding to 3 and 0, their union











1
1
1



 ,





1
0
1



 ,





1
3
0











must also be linearly independent.
Find matrices P and D for which W = PDP−1.

5.3.re3. Find matrices P and D for which the given matrix equals PDP−1, or explain
why none exist.

a.

[

−3 −5
0 2

]

b.

[

1 −4
−2 −1

]

c.

[

5 −1
1 3

]

d.





1 2 −1
−4 7 −3
0 0 3



 e.





2 −3 3
0 4 −2
0 1 1



 f.





−1 −18 18
0 5 −3
0 0 2





Answers

5.3.re2. P =







1 1 1

1 0 3

1 1 0






, D =







3 0 0

0 3 0

0 0 0






. 5.3.re.e3a. P =

[−1 1

1 0

]

, D =

[

2 0

0 −3

]

.

5.3.re.e3b. P =

[

2 1

−1 1

]

, D =

[

3 0

0 −3

]

. 5.3.re.e3c. Not diag’bl. λ = 4 has alg.mult. 2 but geo.mult. 1.

5.3.re.e3d. Not diag’bl. λ = 3 has alg.mult. 2 but geo.mult. 1.

5.3.re.e3e. P =







−1 4 −3
0 1 2

0 1 1






, D =







2 0 0

0 2 0

0 0 3






. 5.3.re.e3f. P =







1 0 −3
0 1 1

0 1 0






, D =







−1 0 0

0 2 0

0 0 5






.
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5.4: The matrix of a transformation

Recall that if V is an n-dimensional vector space and B a basis for V , then the coordinate
map

v 7→ [v]B

is a one-to-one linear map from V onto R
n which allows us to think of V and R

n as being
the “same.”
If the vector space W is m-dimensional with a basis C, and if T is a linear transformation
from V into W , then there’s an m× n matrix M (called the matrix of T relative to B an
C) with the property that

M [v]B = [T (v)]C

for every v in V . That is, as T maps v in V to T (v) in W , so M maps the coordinates of
v in R

n to the coordinates of T (v) in R
m, as indicated in this diagram:

V
T−→ W

[ ]B





y

x




[ ]−1

C

R
n M−→ R

m

If bj stands for the jth element of B, then the columns of M can be found by the rule

jth column of M = Mej = [T (bj)]C.

5.4.re1. Suppose {b1,b2,b3,b4} is a basis for V and {c1, c2, c3} a basis for W , and

T (b1) = c1 − c3

T (b2) = c2

T (b3) = c1 + 2c2 + c3

T (b4) = − c1 − c3

a. Find the matrix M for T relative to B and C
b. Use M compute T (b1 − b2 + b3 − 2b4).

c. Solve Mx = e1, e2, and e3. Then use your answers to find three elements of V
which T send to c1, c2, and c3.

d. Does T map V onto W? Why or why not?

e. Find a nonzero x ∈ R
4 for which Mx = 0, and use your answer to find find a

nonzero element of V which T sends to 0 in W .

5.4.re2. Suppose S : P2 → R
3 : p(t) 7→





p(−1)
p(0)
p(1)





a. Find the matrix M for S relative to the standard bases for P2 and R
3.

b. Solve Mx =





1
1
0



 and use your answer to find a quadratic polynomial p(t) for

which p(−1) = 1, p(0) = 1 and p(1) = 0.
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Eigenvalues and eigenvectors

If T is a linear transformation from a vector space V to itself, and if λ is a scalar and v a
nonzero vector in V satisfying

T (v) = λv

then λ is an eigenvalue and v an eigenvector of T .

5.4.re3. We let C∞(R) stand for the vector space of all functions possessing derivatives of
all orders on R. The differential operator d

dt
is a linear transformation from C∞(R) into (in

fact, onto) itself. Since d
dt
et = et, the function et is an eigenvector of d

dt
, and the scalar 1

is an eigenvalue. In fact, every real number λ is an eigenvalue of d
dt
. Find a corresponding

eigenvector, that is, a nonzero function f(t) for which f ′(t) = λf(t).

Fact 5.4.1. If V is finite-dimensional and B a basis for V and T : V → V a linear
transformation, then the eigenvalues of T are the eigenvalues of its matrix relative to B,
and the eigenvectors of T are those vectors in V whose B-coordinates are eigenvectors of
that matrix.

5.4.re4. Suppose T is a linear transformation from V into itself, and B = {b1,b2} is a
basis for V , and

T (b1) = 4b1 + b2 T (b2) = −2b1 + b2.

a. Find the matrix M for T relative to B and its eigenvalues.

b. Find an eigenvector in R
2 for each eigenvalue for M and the corresponding eigen-

vectors in V for T .
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Similarity revisited

Two n × n matrices are similar exactly when one is the matrix of the other relative to a
certain basis for Rn. Specifically, if A and B are similar

A = PBP−1

then the columns of P form a matrix B for Rn, and

x
A−→ Ax

P
−1





y

x




P

[x]B
B−→ B[x]B = [Ax]B

An n×n matrix is diagonalizable exactly when its matrix relative to a particular basis for
R

n is diagonal.

5.4.re5. Let A =

[

4 −2
1 1

]

and let T : R2 → R
2 : x 7→ Ax.

a. Find a basis B for R2 so that the matrix of T relative to B is diagonal.

b. Find the matrix N for T relative to the basis

{[

2
1

]

,

[

5
3

]}

Answers

5.4.re.e1a. M =







1 0 1 −1
0 1 2 0

−1 0 1 −1






. 5.4.re.e1b.







1 0 1 −1
0 1 2 0

−1 0 1 −1

















1

−1
1

−2











=







4

1

2






and so T (b1−b2+b3−

2b4) = 4c1 + c2 + 2c3. 5.4.re.e1c. Augment M with the 3 × 3 identity and reduce to rref. If we set the

free variable x4 equal zero, solutions are x =







1
2

−1
1
2






,







0

1

0






, and







− 1
2

−1
1
2






. Therefore c1 = T ( 12b1 − b2 +

1
2
b3), c2 = T (b2), and c3 = T (− 1

2
b1 − b2 + 1

2
b3). 5.4.re.e1d. T is onto: since C is in the range of T ,

so is anything in span C = W . 5.4.re.e1e. Augment M with 0 and row reduce to rref. When the free var

is 1, x = [ 0 −2 1 1 ]
T

and therefore T (−2b2 +b3 +b4) = 0W . 5.4.re.e2a. S sends {1, t, t2} to
















1

1

1






,







−1
0

1






,







1

0

1

















, and so M =







1 −1 1

1 0 0

1 1 1






. 5.4.re.e2b. Solution is x =







1

− 1
2

− 1
2






, and so the desired

polynomial is p(t) = 1 − 1
2 t − 1

2 t
2. 5.4.re3. eλt. 5.4.re.e4a. M =

[

4 −2
1 1

]

. λ = 2, 3. 5.4.re.e4b. λ = 2:
[

1

1

]

and b1 +b2. λ = 3:

[

2

1

]

and 2b1 +b2. 5.4.re.e5a. See 5.4.re4.

{[

1

1

]

,

[

2

1

]}

. 5.4.re.e5b. Let P =
[

2 5

1 3

]

. Since A = PMP−1, can solve for N = P−1AP =

[

3 2

0 2

]

.
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-2 -1 0 1 2

-2

-1

0

1

2

-8 -6 -4 -2 0 2 4 6

-8

-6

-4

-2

0

2

4

6

-2 -1 0 1 2

-2

-1

0

1

2

5.5: Complex eigenvalues of a real matrix

For a review of complex numbers, see Appendix B in our text, or the notes at
https://kunklet.people.cofc.edu/MATH111/Carith.pdf

If the real n×n matrix A has a nonreal eigenvalue λ, then any eigenvector of A corresp. to
λ must also be nonreal. Consequently, there exist real numbers a and b and real linearly
independent vectors v and w with the property that

A(v+ iw) = (a− bi)(v + iw)

As a consequence, if we let P be the n× 2 matrix whose columns are v and w,

P = [v w]

then

(5.5.1) AP = P

[

a −b
b a

]

In the special case that a2 + b2 = 1, the matrix

C =

[

a −b
b a

]

is the standard matrix for a rotation in R
2 (§1.9); if a2+b2 6= 1, then C is the standard ma-

trix for a rotation and scaling in R
2. See plots below of x (blue) in R

2 and Cx, C2x, C3x, . . .
(red) for three different (a, b) pairs.

a2 + b2 = 1 a2 + b2 > 1 a2 + b2 < 1

When A sends the vector Px to PCx, the effect is a rotation (and possibly scaling) of
coordinates in the two dimensional column space of P .



MATH 203 review: 5.5 http://kunklet.people.cofc.edu/ 9:06 24 April 2023 page 74

-10 -5 0 5

-8

-6

-4

-2

0

2

4

6

When n = 2, the matrix P invertible, and

A = PCP−1,

That is, A is similar to a rotation-and-scaling ma-
trix in R

2. The figure is a plot of points x (blue)
and Ax, A2x, A3x, . . . (red) for one such A.

5.5.re1. To find the eigenvalues of A =

[

0 5
−2 6

]

, solve the characteristic equation

∣

∣

∣

∣

−λ 5
−2 6− λ

∣

∣

∣

∣

= −λ(6− λ) + 10 = λ2 − 6λ+ 10 = 0.

Completing the square,

λ2 − 6λ+ 9 = −10 + 9 =⇒ (λ− 3)2 = −1 =⇒ λ = 3± i.

As expected, the complex eigenvalues come in a conjugate pair, as will their eigenvectors.
To find a basis for the eigenspace corresponding to 3 + i, row-reduce

A− (3 + i)I =

[

−3− i 5
−2 3− i

]

.

Since this 2×2 is singular, the second row must be a multiple of the first. (You can confirm
this by showing 5

−3−i
= 3−i

−2 .) Therefore, A− (3 + i) must row reduce to
[

1 −3
2
+ 1

2
i

0 0

]

and so the eigenspace is spanned by the vector

[

3
2
− 1

2
i

1

]

. In case you prefer to eliminate

the fractions, the eigenspace is also spanned by

[

3− i
2

]

. Using this, we find

P =

[

3 −1
2 0

]

and C =

[

3 1
−1 3

]

.

The eigenspace corresponding to the conjugate eigenvalue 3 − i must be spanned by the

conjugate vector

[

3 + i
2

]

, which gives

P =

[

3 1
2 0

]

and C =

[

3 −1
1 3

]

.

Either choice gives a correct factorization of A:
[

0 5
−2 6

]

=

[

3 −1
2 0

] [

3 1
−1 3

] [

3 −1
2 0

]−1

=

[

3 1
2 0

] [

3 −1
1 3

] [

3 1
2 0

]−1
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5.5.re2. Find the eigenvalues of the given matrix.

a.

[

3 −4
2 −1

]

b.

[

−4 −15
3 8

]

c.

[

5 1
−10 −1

]

d.

[

3 −10
4 −9

]

e.





−1 0 0
0 −7 13
0 −5 9



 f.





−4 10 0
−2 4 1
0 0 3





5.5.re3. Find P and C so that the given matrix equals PCP−1. Answers are not unique:
If

P = [v w] C =

[

a −b
b a

]

is a solution, so is

P = [v −w] C =

[

a b
−b a

]

a.

[

3 −4
2 −1

]

b.

[

−4 −15
3 8

]

c.

[

5 1
−10 −1

]

d.

[

3 −10
4 −9

]

e.

[

−7 13
−5 9

]

f.

[

−4 10
−2 4

]

Answers

5.5.re.e2a. 1± 2i. 5.5.re.e2b. 2± 3i. 5.5.re.e2c. 2± i. 5.5.re.e2d. −3± 2i. 5.5.re.e2e. −1, 1± i.

5.5.re.e2f. 3, ±2i. 5.5.re.e3a. P =

[

1 −1
1 0

]

, C =

[

1 −2
2 1

]

. 5.5.re.e3b. P =

[

1 2

0 −1

]

, C =

[

2 3

−3 2

]

.

5.5.re.e3c. P =

[

0 1

1 −3

]

, C =

[

2 −1
1 2

]

. 5.5.re.e3d. P =

[

1 2

1 1

]

, C =

[−3 2

−2 −3

]

.

5.5.re.e3e. P =

[

2 3

1 2

]

, C =

[

1 1

−1 1

]

. 5.5.re.e3f. P =

[

1 3

1 1

]

, C =

[

0 −2
2 0

]

.
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6.1: Inner Product, Length, and Orthogonality

Remember that Rn stands for the vector space of all n× 1 column vectors.

Definition 6.1.1. If u and v are in R
n, their inner product is the scalar

u · v = uTv = u1v1 + u2v2 + · · ·+ unvn.

The inner product is also known as the “dot product” or “scalar product.”

Properties 6.1.2. For any u, v, and w in R
n, and any scalar c,

1. u · v = v · u
2. (u+ v) ·w = u ·w + v ·w.

3. (cu) · v = c(u · v) = u · (cv).
4. u · u ≥ 0; furthermore, u · u = 0 iff u = 0.

Definition 6.1.3. The length of u in R
n is

‖u‖ =
√
u · u =

√

u2
1 + u2

2 + · · ·+ u2
n

The length is also known as the “norm” or “magnitude.”

The distance between u and v in R
n is

‖u− v‖.

A unit vector is a vector in R
n having length 1. Two vectors are parallel if one is a

scalar multiple of the other, and in the same direction if one is a positive scalar multiple
of the other. To normalize a vector is to produce a unit vector in the same direction.

More properties 6.1.4.

5. ‖cu‖ = |c|‖u‖
6. ‖u− v‖ = ‖v − u‖.

6.1.re1. Let

u =







1
−1
−3
5






v =







2
0
4
−2






w =







1
0
2
−1







Find the following.

a. u · v b. v · u c. u · u
d. ‖u‖ e. ‖v‖ f. ‖w‖
g. u · v +w · v h. (u+w) · v i. (u− v) ·w
j. ‖u− v‖
k. A unit vector in the same direction as u.

l. A unit vector in the opposite direction of u.
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Orthogonality

Definition 6.1.5. We say the vectors u and v are orthogonal and write u ⊥ v if
u · v = 0.

6.1.re2.





−1
1
2



 ⊥





−1
1
−1



 because





−1
1
2



 ·





−1
1
−1



 = [−1 1 2 ]





−1
1
−1



 = 0.

Definition 6.1.6. The orthogonal complement of a set W ⊂ R
n is the set

W⊥ = {x ∈ R
n
∣

∣

∣
x ⊥ wfor every w ∈W }

Fact 6.1.7. If W is a subset of Rn, then W⊥ is a subspace of Rn.

If W is a collection of p vectors in R
n, and P is the p × n matrix whose columns are the

elements of W , then x ∈W⊥ iff Px = 0. That is, W⊥ = NulP .

6.1.re3. Find a basis for the vector space

















2
−3
−7
−4






,







1
−2
−4
0






,







−1
3
5
−3

















T

This orthogonal complement is the null space of the matrix





2 −3 −7 −4
1 −2 −4 0
−1 3 5 −3





The reduced row echelon form of this matrix is




1 0 −2 0
0 1 1 0
0 0 0 1





and so its null space is one-dimensional and has the basis

















2
−1
1
0

















.

6.1.re4. Find a basis for the given orthogonal complement.

a.

















1
0
−5
3






,







2
1
−9
8






,







−1
1
6
−1

















⊥

b.





























1
2
−1
−1
−2











,











2
5
−4
0
−3











,











1
1
1
−5
−3





























⊥
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Answers

6.1.re.e1a. −20. 6.1.re.e1b. −20. 6.1.re.e1c. 36. 6.1.re.e1d. 6. 6.1.re.e1e.
√
24 = 2

√
6. 6.1.re.e1f.

√
6.

6.1.re.e1g. −8. 6.1.re.e1h. −8. 6.1.re.e1i. −22. 6.1.re.e1j. 10. 6.1.re.e1k. 1
6











1

−1
−3
5











=











1/6

−1/6
−3/6
5/6











.

6.1.re.e1l. − 1
6











1

−1
−3
5











=











−1/6
1/6

3/6

−5/6











. 6.1.re.e4a.





























5

−1
1

0











,











−3
−2
0

1





























. 6.1.re.e4b.









































−3
2

1

0

0















,















4

−1
0

0

1









































.
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6.2: Orthogonal and orthonormal sets

Definition 6.2.1. The set of vectors

(6.2.2) {u1,u2,u3, . . . ,up}

is said to be orthogonal if
ui · uj = 0 if i 6= j

and orthonormal if

ui · uj =

{

0 if i 6= j, and
1 if i = j.

In other words, an orthonormal set is an orthogonal set of unit vectors.
Let U denote the matrix whose columns are the elements of (6.2.2):

U = [u1 u2 u3 . . . up ]

Then the set (6.2.2) is

{

orthogonal

orthonormal

}

iff UTU =

{

a diagonal matrix.

the identity matrix.

}

6.2.re1. The set of vectors










1
1
0



 ,





−1
1
2



 ,





−1
1
−1











is an orthogonal set because





1
1
0



 ⊥





−1
1
2









1
1
0



 ⊥





−1
1
−1









−1
1
2



 ⊥





−1
1
−1



 ,

meaning

[ 1 1 0 ]





−1
1
2



 = 0 [ 1 1 0 ]





−1
1
−1



 = 0 [−1 1 2 ]





−1
1
−1



 = 0.

These same calculations product the off-diagonal entries of the matrix product





1 −1 −1
1 1 1
0 2 −1





T 



1 −1 −1
1 1 1
0 2 −1



 =





1 1 0
−1 1 2
−1 1 −1









1 −1 −1
1 1 1
0 2 −1



 =





2 0 0
0 6 0
0 0 3



 .
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6.2.re2. The set










1
1
0



 ,





−1
1
2



 ,





−1
1
−1



 ,





0
1
1











is not orthogonal because

[ 1 1 0 ] ·





0
1
1



 = 1 6= 0,

(which is enough to guarantee that







1 1 0
−1 1 2
−1 1 −1
0 1 1











1 −1 −1 0
1 1 1 1
0 2 −1 1



 =







∗ ∗ ∗ 1
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
1 ∗ ∗ ∗







is not diagonal).

6.2.re3. The set
















1
0
−1
1






,







−2
1
2
0






,







0
−2
1
1

















is orthogonal because





1 0 −1 −1
−2 1 2 0
0 −2 1 1











1 −2 0
0 1 −2
−1 2 1
1 0 1






=





3 0 0
0 9 0
0 0 6





If we normalize the vectors in this set, we obtain the orthonormal set

















1/
√
3

0
−1/
√
3

1/
√
3






,







−2/3
1/3
2/3
0






,







0
−2/
√
6

1/
√
6

1/
√
6
















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Orthogonal matrices

Definition 6.2.3. A square matrix U is said to orthogonal if its columns are orthonor-
mal, that is, if

(6.2.4) UTU = I.

Because an orthogonal matrix is square, (6.2.4) implies that UT = U−1, that is

(6.2.5) UTU = UUT = I.

Important note: it is impossible for a non-square matrix to satisfy (6.2.5).

6.2.re4. By normalizing the vectors in 6.2.re1 we obtain the orthonormal set











1/
√
2

1/
√
2

0



 ,





−1/
√
6

1/
√
6

2/
√
6



 ,





−1/
√
3

1/
√
3

−1/
√
3











Therefore




1
√
2 −1/

√
6 −1/

√
3

1
√
2 1/

√
6 1/

√
3

0 2/
√
6 −1/

√
3





is an orthogonal matrix.

Fact 6.2.6. If U is an orthogonal matrix then

(6.2.7) (Uu)T (Uv) = uTv

for all u and v in R
n. Consequently, for all such u and v,

(6.2.8) u ⊥ v iff (Uu) ⊥ (Uv)

and

(6.2.9) ‖Uu‖ = ‖u‖

6.2.re5. Explain why (6.2.7) follows from (6.2.4), and (6.2.8) and (6.2.9) follow from
(6.2.7).
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Coordinates relative to an orthogonal basis

Fact 6.2.10. If

{u1,u2,u3, . . . ,up}

is an orthogonal set of non-zero vectors, and if u is in their span, then

(6.2.11) u =
u · u1

u1 · u1
u1 +

u · u2

u2 · u2
u2 + · · ·+

u · up

up · up

up

Consequently, any orthogonal set of non-zero vectors is linearly independent and forms a
basis for their span, and any set of n orthogonal, non-zero vectors in R

n is a basis for Rn.

6.2.re1, continued. The set of vectors

{u1,u2,u3} =











1
1
0



 ,





−1
1
2



 ,





−1
1
−1











is an orthogonal basis for R3. The coordinates of the vector u =





1
0
0



 relative to this basis

are
u · u1

u1 · u1
=





1
0
0



 ·





1
1
0









1
1
0



 ·





1
1
0





=
1

2

u · u2

u2 · u2
=





1
0
0



 ·





−1
1
2









−1
1
2



 ·





−1
1
2





=
−1
6

u · u3

u3 · u3
=





1
0
0



 ·





−1
1
−1









−1
1
−1



 ·





−1
1
−1





=
−1
3

That is,




1
0
0



 =
1

2





1
1
0



− 1

6





−1
1
2



− 1

3





−1
1
−1





6.2.re3, continued. The set

{v1,v2,v3} =

















1
0
−1
1






,







−2
1
2
0






,







0
−2
1
1
















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is an orthogonal basis for a three-dimensional subspace of R4. The vector u =







5
−5
−3
−1







T

belongs to this subspace, and its coordinates relative to the basis are

u · v1

v1 · v1
=







5
−5
−3
−1






·







1
0
−1
1













1
0
−1
1






·







1
0
−1
1







= 3

u · v2

v2 · v2
=







5
−5
−3
−1






·







−2
1
2
0













−2
1
2
0






·







−2
1
2
0







= −1

u · v3

v3 · v3
=







5
−5
−3
−1






·







0
−2
1
1













0
−2
1
1






·







0
−2
1
1







= 2

You can confirm that u is in the span of the vi’s by checking for yourself that u =
3v1 − v2 + 2v3.

6.2.re3, continued. The vector x = [ 0 1 0 1 ]
T
is not in the span of {v1,v2,v3} because

x · v1

v1 · v1
= −1

3

x · v2

v2 · v2
=

1

9

x · v3

v3 · v3
= −1

6

but

(6.2.12) −1

3







1
0
−1
1






+

1

9







−2
1
2
0






− 1

6







0
−2
1
1






=







−5/9
4/9
7/18
3/2






6=







0
1
0
1







6.2.re6. Verify that the given set is orthogonal. Then, if possible, express the given vector
as a linear combination of these vectors.

a.

{[

−3
4

]

,

[

4
3

]}

;

[

4
5

]

b.











−2
1
1



 ,





1
−1
3



 ,





4
7
1











;





2
0
−1





c.

















2
1
0
1






,







1
−1
3
−1






,







−1
2
1
0

















;







1
0
−1
0






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Orthogonal Projection onto a one-dimensional subspace

0

u

v
projW u

W = span{v}

Definition 6.2.13. If v is a nonzero vector and
W its span, then the orthogonal projection of a
vector u onto W is

projW u =
u · v
v · vv

The orthogonal projection gets its name from the fact that

(u− projW u) · v = 0

and consequently

(6.2.14) u− projW u ∈W⊥.

This means that u is the sum of a vector in W and a vector in W⊥:

(6.2.15) u = projW u+ (u− projW u).

The projection projW u is the vector in W closest to u:

(6.2.16) ‖u− projW u‖ ≤ ‖u−w‖ for all w ∈W

The projection projW u is sometimes referred to as the best approximation to u from
W and ‖u− projW u‖ as the distance from u to W .

6.2.re7. Find the point on the line y = 3x closest to the point (4, 1). What is the distance

from (4, 1) to that line? The line y = 3x is the span of the vector [ 1 3 ]
T
in R

2. The

closest point on this line to (4, 1) is the projection of [ 4 1 ]
T
onto this span:

[

4
1

]

·
[

1
3

]

[

1
3

]

·
[

1
3

]

[

1
3

]

=

[

0.7
2.1

]

The distance from (4, 1) to the line is the distance from [ 4 1 ]
T
to the projection:

∥

∥

∥

∥

[

4
1

]

−
[

0.7
2.1

]∥

∥

∥

∥

=

∥

∥

∥

∥

[

3.3
−1.1

]∥

∥

∥

∥

=
√

3.32 + 1.12.

6.2.re7, continued. Write

[

4
1

]

as the sum of two vectors, one parallel to

[

1
3

]

and one

perpendicular to

[

1
3

]

.



MATH 203 review: 6.2 http://kunklet.people.cofc.edu/ 9:06 24 April 2023 page 85

By (6.2.15),
[

4
1

]

=

[

0.7
2.1

]

+

([

4
1

]

−
[

0.7
2.1

])

=

[

0.7
2.1

]

+

[

3.3
−1.1

]

6.2.re8. Find the projection of the first vector onto the span of the second. Use this to
write the first as a multiple of the second plus a vector orthogonal to the second. Finally,
find the distance from the first to the span of the second.

a.

[

2
1

] [

−1
1

]

b.

[

−1
1

] [

−4
3

]

c.

[

5
12

] [

−12
5

]

Answers

6.2.re5. Remember that uTv is the dot product u ·v. (6.2.7): In general, (AB)T = BTAT , and so

(Uu)T (Uv) = uTUTUv = uT Iv = uTv. (6.2.8): since (Uu) · (Uv) = u · v, if either equals zero, both

must equal zero. (6.2.9): ‖Uu‖2 = (Uu)T (Uu) = uTu = ‖u‖2. Take square roots to obtain (6.2.9).

6.2.re.e6a.

[

4

5

]

= 8
25

[−3
4

]

+ 31
25

[

4

3

]

. 6.2.re.e6b.







2

0

−1






= − 5

6







−2
1

1






− 1

11







1

−1
3






+ 7

66







4

7

1






.

6.2.re.e6c.











1

0

−1
0











is not in their span, since it fails to equal 2
6











2

1

0

1











− 2
12











1

−1
3

−1











− 2
6











−1
2

1

0











.

6.2.re.e8a. proj =

[

1/2

−1/2

]

;

[

2

1

]

=

[

1/2

−1/2

]

+

[

3/2

3/2

]

. dist =

∥

∥

∥

∥

[

3/2

3/2

]∥

∥

∥

∥

= 3
2

√
2.

6.2.re.e8b. proj =

[− 28
25

21
25

]

;

[−1
1

]

=

[− 28
25

21
25

]

+

[ 3
25
4
25

]

. dist =

∥

∥

∥

∥

[ 3
25
4
25

]
∥

∥

∥

∥

= 1
5 .

6.2.re.e8c. proj = 0;
[

5

12

]

=

[

0

0

]

+

[

5

12

]

. dist =

∥

∥

∥

∥

[

5

12

]∥

∥

∥

∥

= 13.
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6.3: Orthogonal projection onto multidimensional subspaces

0

u

projW u W

Definition 6.3.1. If {u1,u2,u3, . . . ,up} is an orthog-
onal set of nonzero vectors and W their span, then the
orthogonal projection of a vector u onto W is

(6.3.2) u =
u · u1

u1 · u1
u1 +

u · u2

u2 · u2
uu2 + · · ·+

u · up

up · up

up

Definition 6.2.13 is a special case of 6.3.1. Just as in section 6.2,

u− projW u ∈ W⊥

Therefore u is the sum of a vector in W and a vector in W⊥:

u = projW u+ (u− projW u)

The projection projW u is the vector in W closest to u:

‖u− projW u‖ ≤ ‖u−w‖ for all w ∈W

The projection projW u is sometimes referred to as the best approximation to u from
W and ‖u− projW u‖ as the distance from u to W .
Two notes:
First, the right sides of (6.2.11) and (6.3.2) are the same because projW u = u if u ∈W .
Second, projection onto W is a linear transformation since (6.3.2) can be written as a
matrix product. If U is the matrix whose columns are the basis elements:

U = [u1 u2 u3 . . . up ]

then
projW u = U(UTU)−1UTu

6.3.re1. Prove that it W is a subspace in R
n with an orthogonal basis, then the orthogonal

projection
R

n → R
n : u 7→ projW u

maps R
n onto W . To do this, your must first explain why that projW u ∈ W for all

u ∈ R
n, and then why every w ∈W equals projW u for some u ∈ R

n.
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6.3.re2. Verify that the given set is orthogonal. Then find the best approximation to the
given vector from the span of the set.

a.











1
−1
3



 ,





4
7
1











;





2
0
−1



 b.

















2
1
0
1






,







1
−1
3
−1






,







−1
2
1
0

















;







1
0
−1
0







c.

















1
0
−1
1






,







−2
1
2
0






,







0
−2
1
1

















;







0
1
0
1







Answers

6.3.re1. First, (6.3.2) shows projW u is a linear combination of the basis elements of W and is therefore

in W . Second, w = projW w for any w in W . 6.3.re.e2a. − 1
11







1

−1
3






+ 7

66







4

7

1






= 1

6







2

5

−1






.

6.3.re.e2b. 2
6











2

1

0

1











− 2
12











1

−1
3

−1











− 2
6











−1
2

1

0











= 1
6











5

−1
−5
3











. 6.3.re.e2c.











−5/9
4/9

7/18

3/2











(See 6.2.re3).


