math 120-11 (Kunkle), Quiz 5
10 pts, 10 minutes

Name:
Feb 29, 2024

1a (8 pts). Find the linearization of $f(x)=\frac{2 x-1}{x+1}$ at (the x-value) $a=1$.
1b (2 pts). Use your answer to 1a to approximation $f(1.01)$.
You can leave unfinished arithmetic in your answers.

Solution:

1a.(Source: 3.10.1,122) Find $\frac{d y}{d x}$ using either use the quotient rule:

$$
\frac{(2 x-1)^{\prime}(x+1)-(x+1)^{\prime}(2 x-1)}{(x+1)^{2}}=\frac{2(x+1)-(2 x-1)}{(x+1)^{2}}=\frac{3}{(x+1)^{2}},
$$

or rewrite the function as $(2 x-1)(x+1)^{-1}$ and use the product and chain rules:

$$
(2 x-1)^{\prime}(x+1)^{-1}+(2 x-1)(-1)(x+1)^{-2}(x+1)^{\prime}=2(x+1)^{-1}-(2 x-1)(x+1)^{-2},
$$

or $(x+1)^{-2}(2(x+1)-(2 x-1))=3(x+1)^{-2}$.
Recall that the linearization of a function $f(x)$ is

$$
L(x)=f(a)+f^{\prime}(a)(x-a) .
$$

$L(x)$ is the function whose graph is the line tangent to the graph of $f(x)$ at $x=a$.
For our function, at $a=1$, we have

$$
\begin{aligned}
L(x) & =f(1)+f^{\prime}(1)(x-1) \\
& =\frac{2-1}{1+1}+\frac{3}{(1+1)^{2}}(x-1) \\
& =\frac{1}{2}+\frac{3}{4}(x-1) .
\end{aligned}
$$

See the graphs of $f(x)$ and $L(x)$ at https://www.desmos.com/calculator/wjsiqnyoqz. 1b.

$$
f(1.01) \approx L(1.01)=\frac{1}{2}+\frac{3}{4}(1.01-1)
$$

You're not required to write this in decimal form, but when we do, we see $L(1.01)=$ $0.5+(.75)(.01)=0.5075$ is very close to $f(1.01)=\frac{1.02}{2.01}=0.50746287 \ldots$.

