A complex number is an expression of the form

\[x + iy \]

where \(x \) and \(y \) are real numbers and \(i \) is the “imaginary” square root of \(-1\). For example, \(2 + 3i \) is a complex number. Just as we use the symbol \(\mathbb{R} \) to stand for the set of real numbers, we use \(\mathbb{C} \) to denote the set of all complex numbers. Any real number \(x \) is also a complex number, \(x + 0i \); in set notation, \(\mathbb{R} \subset \mathbb{C} \).

Assume for this paragraph that \(z = x + iy \).

Then \(x \) is called the real part of \(z \) and \(y \) is called the imaginary part of \(z \). This is written

\[x = \text{Re}(z) \quad \text{and} \quad y = \text{Im}(z). \]

Two complex numbers are equal if and only if their real parts are equal and their imaginary parts are equal. The conjugate of \(z \) is the complex number

\[\overline{z} = x - iy \]

and the absolute value of \(z \) is

\[|z| = \sqrt{x^2 + y^2}. \]

Note that when \(y = 0 \), this is the same as the absolute value formula for real numbers \(x \). Note also that, since \((x + iy)(x - iy) = x^2 - i^2y^2 = x^2 + y^2\),

\[z\overline{z} = |z|^2. \]

You can add, subtract, multiply, and divide complex numbers using the usual rules of algebra, keeping in mind that \(i^2 = -1 \).

Example 1: Write the sum in \(x + iy \) form:

\[(2 + 3i) + (4 - i) = 6 + 2i \]

end Example 1

Example 2: Write the sum in \(x + iy \) form:

\[(1 + 5i) + (2 - 3i) = 1 + 5i + 2 + 3i = 3 + 8i \]

end Example 2

Example 3: Write the number in \(x + iy \) form:

\[2(1 - 7i) - \frac{1}{2}(5 + 6i) = 2 - 14i - \frac{5}{2} - 3i = \frac{-1}{2} - 17i. \]

end Example 3

Example 4: Find the product. Write your answer in \(x + iy \) form:

\[(4 - 7i)(2 + 3i) = 8 - 14i + 12i - 21i^2 \]
\[= 8 - (-1)21 - 2i \]
\[= 29 - 2i \]

end Example 4
Writing a quotient in \(x + iy \) form requires the use of the conjugate, as the next example demonstrates.

Example 5: Find the quotient. Write your answer in \(x + iy \) form:

\[
\frac{4 - 7i}{2 - 3i} = \left(\frac{4 - 7i}{2 - 3i} \right) \left(\frac{2 + 3i}{2 + 3i} \right) = \frac{29 - 2i}{13} = 2 - \frac{2}{13}i
\]

end Example 5

The interesting thing about the act of conjugation is that it commutes with the arithmetic operations \(+, -, \times, \div\):

\[
\begin{align*}
\bar{u + v} &= \bar{u} + \bar{v} \\
\bar{u - v} &= \bar{u} - \bar{v} \\
\bar{u \times v} &= \bar{u} \times \bar{v} \\
\bar{u \div v} &= \bar{u} \div \bar{v}
\end{align*}
\]

Complex number arise naturally in the study of the solutions of polynomial equations. If we evaluate a polynomial \(p \) with real coefficients at a complex number \(z \),

\[\bar{p}(z) = p(\bar{z}).\]

Consequently, if \(z \) is a zero of the \(p \), so \(\bar{z} \) must also be a zero of \(p \). This is the basis for the following fact.

Lemma. The complex zeros of a polynomial with real coefficients come in conjugate pairs.

Example 6: Expand the polynomial:

\[
(x - 2 + i)(x - 2 - i) = x^2 - 2x - ix - 2x + 4 + 2i + ix - 2i - i^2 = x^2 - 4x + 4 + 1 = x^2 - 4x + 5
\]

Note that, despite its having real coefficients, the polynomial equation \(x^2 - 4x + 5 = 0 \) has only non-real solutions \(x = 2 \pm i \), and these solutions are conjugates of one another, as promised by the Lemma above.

end Example 6

By the way, there’s an easier solution to the above example using the difference of squares:

Example 7: Expand the polynomial:

\[
(x - 3 + 4i)(x - 3 - 4i) = (x - 3 + 4i)(x - 3 - 4i) \\
= (x - 3)^2 - (4i)^2 \\
= x^2 - 6x + 9 - 16i^2 = x^2 - 6x + 9 + 16 = x^2 - 6x + 25
\]

end Example 7
Exercises

1. Write in $x + iy$ form:

 a. $3 + 2i + 2(1 - i)$
 b. $3(4 - 5i) - (2 + 4i)$
 c. $-2(2 - i) + \frac{1}{3}(1 + 4i)$
 d. $\frac{2}{3}(1 + 8i) + \frac{3}{2}(2 - 7i)$
 e. $\frac{1}{5}(7 - 4i) - \frac{2}{5}(6 - 5i)$
 f. $(i + 1)(i - 1)$
 g. $(2 - 3i)(2 + 3i)$
 h. $(4 - i)(5 + 2i)$
 i. $(3 + \frac{1}{2}i)(\frac{3}{2} - \frac{1}{3}i)$
 j. $(4 + i) \div (1 - 8i)$
 k. $(3 - 2i) \div 2(1 - i)$
 l. $(1 + 2i) \div (1 - 2i)$
 m. $(3 + 4i) \div (5 + 6i)$

2. Expand the polynomial:

 a. $(x + 2i)(x - 2i)$
 b. $(x - 3i)(x + 3i)$
 c. $(x + i\sqrt{5})(x - i\sqrt{5})$
 d. $(x - 2 + 4i)(x - 2 - 4i)$
 e. $(x - 3 + i)(x - 3 - i)$
 f. $(x + 1 - 2i)(x + 1 + 2i)$
 g. $(x + \frac{1}{2} - i)(x + \frac{1}{2} + i)$
 h. $(2x + 1 - i\sqrt{3})(2x + 1 + i\sqrt{3})$
 i. $(x + 3 + i\sqrt{5})(x + 3 - i\sqrt{5})$

Answers

1a. 5 1b. 10 - 11i 1c. $\frac{-11 + 10}{2}i$ 1d. $\frac{11 - 11i}{3}$ 1e. $\frac{-11 - 22i}{3}$ 1f. -2 1g. 13 1h. 18 - 13i 1i. $\frac{1}{2} - \frac{3}{2}i$ 1j. $\frac{1 + 3i\sqrt{3}}{6}$ 1k. $\frac{1}{2} + \frac{5}{2}i$
11. $\frac{-1}{2} + \frac{1}{2}i$ 1m. $\frac{-20 - 26i}{5}$ 2a. $x^2 + 4$ 2b. $x^2 + 9$ 2c. $x^2 + 5$ 2d. $x^2 - 4x + 20$ 2e. $x^2 - 6x + 10$ 2f. $x^2 + 2x + 5$ 2g. $x^2 + x + \frac{5}{4}$
2h. $4x^2 + 4x + 1$ 2i. $x^2 + 6x + 14$