1 (10 pts). Graph the vector field \(\langle y, x \rangle \) at 25 equally spaced points in \(-2 \leq x, y \leq 2\). Hint: to make a nicer graph, try graphing \(\frac{1}{2} \) times the given vector field.

Solution:

1. It helps to recognize that this vector field is the gradient of the function \(f(x, y) = xy \) and that the gradient must be perpendicular to the level curves of \(f \). Here’s a graph of the vector field, including some level curves.

\[\langle y, x \rangle \]

Comments: Because \(\langle y, x \rangle = \nabla f(x, y) \), we say that \(\langle y, x \rangle \) is **conservative** and that \(f(x, y) \) is its **potential**.