1. This question is about the surface \(x^2 - y^2 + \frac{1}{4}z^2 = 1 \).

a (2 pts). When they exist, the traces of this surface in planes \(y = \) constant are

(check one) □ parabolas □ ellipses □ hyperbolas □ lines

b (2 pts). When they exist, the traces of this surface in planes \(z = \) constant are

(check one) □ parabolas □ ellipses □ hyperbolas □ lines

c (2 pts). When they exist, the traces of this surface in planes \(x = \) constant are

(check one) □ parabolas □ ellipses □ hyperbolas □ lines

d (3 pts). Find all intersections of this graph with the coordinate axes.

e (6 pts). Make a rough sketch of this surface on the axes below. Label the axes and the intercepts you found in part d.

2. Suppose a particle has position \(\mathbf{r} = (\cos t + t \sin t, -\sin t + t \cos t, \frac{1}{2}t^2) \) at time \(t > 0 \).

a (11 pts). Express the particle’s velocity, acceleration, and speed as functions of \(t \). (Label your answers so I can tell which is which.)

b (12 pts). Express the vectors \(\mathbf{T}, \mathbf{N}, \) and \(\mathbf{B} \) along the particle’s path as functions of \(t \).

c (8 pts). Find the path’s curvature at time \(t = 2\pi \).

d (10 pts). Find the tangential and normal components of the particle’s acceleration at \(t = 2\pi \). (Label your answers so I can tell which is which.)

e (5 pts). Find the particle’s osculating plane at time \(t = 2\pi \).

3 (10 pts). Find the length of the curve \(x(t) = t - 1 \quad y(t) = \frac{2}{3}t^3 \quad z(t) = -\frac{2}{5}t^5 + 1 \) from \(t = 0 \) to \(t = 1 \).

4 (8 pts). Find an equation of the line tangent to the curve \(\mathbf{r} = (t^2, e^t, \ln t) \) at the point corresponding to \(t = 1 \). Express your answer in parametric form.

5 (3 pts). Suppose \(\mathbf{a} \cdot \mathbf{b} = 0 \). What can you conclude about the vectors \(\mathbf{a} \) and \(\mathbf{b} \)?

6 (3 pts). Suppose \(\mathbf{u} \times \mathbf{v} = 0 \). What can you conclude about the vectors \(\mathbf{u} \) and \(\mathbf{v} \)?

7 (5 pts). Let \(\mathbf{u} = \mathbf{i} - 2\mathbf{j} + \mathbf{k} \) and \(\mathbf{w} = 2\mathbf{i} + \mathbf{j} - \mathbf{k} \). Find the vector projection of \(\mathbf{w} \) onto \(\mathbf{u} \).

8 (5 pts). Find an equation of the plane parallel to \(2x - 2y + \pi z = 8 \) that passes through \((1, -2, 1) \).

9 (5 pts). Find a vector parallel the line of intersection of the planes \(x - 2y - 8 = 0 \) and \(3y + z = 12 + x \).
1. \(x^2 - y^2 + \frac{1}{4} z^2 = 1 \)

- \(x = \text{const} \), \(-y^2 + \frac{1}{4} z^2 = \text{const} \), a hyperbola
- \(y = \text{const} \), \(x^2 + \frac{1}{4} z^2 = \text{const} \), an ellipse
- \(z = \text{const} \), \(x^2 - y^2 = \text{const} \), a hyperbola

\(\frac{d}{dt} \) order differed on different tests.

\(x \)-intercept \((y = z = 0) \) \(x^2 = 1 \), \(x = \pm 1 \).

\(y \)-intercept \((x = z = 0) \) \(-y^2 = 1 \). No real solutions, so no \(y \)-intercept.

\(z \)-intercept \((x = y = 0) \) \(\frac{1}{4} z^2 = 1 \) \(\Rightarrow z = \pm 2 \). (Alt: \(\frac{1}{4} z^2 = 1 \) \(\Rightarrow z = \pm 2 \))

\[A = (0, 0, 2) \quad (\text{alt} \ (0, 0, 3)) \]
\[B = (1, 0, 0) \]
\[C = (0, 0, -2) \quad (\text{alt} \ (0, 0, -3)) \]
\[D = (-1, 0, 0) \]

2. \(\vec{r} = \langle \cos t + tsin t, -sin t + tcos t, \frac{1}{2} t^2 \rangle \)

a. \(\vec{r}' = \langle t \cos t, -t \sin t, t \rangle = \text{velocity} \)

\[\vec{r}'' = \langle -t \sin t - \cos t, -t \cos t - \sin t, 1 \rangle = \text{acceleration} \]

\[|\vec{r}''| = \sqrt{t^2 \cos^2 t + t^2 \sin^2 t + 1} = \sqrt{2t^2} = t \sqrt{2} \quad (\text{since } t > 0) = \text{speed}. \]

b. \(\vec{T} = \frac{\vec{r}'}{|\vec{r}''|} = \frac{\langle t \cos t, -t \sin t, t \rangle}{t \sqrt{2}} = \frac{1}{\sqrt{2}} \langle \cos t, -\sin t, 1 \rangle \)

\[\vec{N} = \frac{d\vec{r}'}{dt} = \frac{1}{\sqrt{2}} \langle -\sin t, -\cos t, 0 \rangle = \langle -\sin t, -\cos t, 0 \rangle \]

\[\vec{B} = \vec{T} \times \vec{N} = \begin{vmatrix} i & j & k \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & 0 \end{vmatrix} = \frac{1}{\sqrt{2}} \cos t \langle i \rangle - \frac{1}{\sqrt{2}} \sin t \langle j \rangle - \frac{1}{2} \langle k \rangle \]
2. alt. \(\vec{r} = \langle \cos t + t \sin t, \sin t - t \cos t, \frac{1}{2} t^2 \rangle \)

a. \(\vec{v} = \langle -t \cos t, t \sin t, t \rangle \), \(\vec{a} = \langle -t \sin t, \cos t - t \cos t, 1 \rangle \)
\[\frac{ds}{dt} = t \sqrt{2} \text{ (again)} \]

b. \(\vec{r} = \langle \cos t, \sin t, 1 \rangle / \sqrt{2} \)
\(\vec{n} = \langle -\sin t, \cos t, 0 \rangle \)
\(\vec{B} = \langle \frac{1}{\sqrt{2}} \cos t, \frac{1}{\sqrt{2}} \sin t, \frac{1}{2} \rangle \)

2. continued.

c. \(@ t = 2 \pi \), \(\vec{r}' = \langle 2 \pi, 0, 2 \pi \rangle \)
\(\vec{r}'' = \langle 1, -2 \pi, 1 \rangle \)
\[\kappa = \frac{1}{\sqrt{\left(\frac{\vec{r}' \times \vec{r}''}{|\vec{r}'| |\vec{r}''|}\right)^4}} = \frac{1}{4 \pi} \]
\[\kappa = \frac{\sqrt{16 \pi^4 + 16 \pi^4}}{(2 \pi \cdot \sqrt{2})^3} = \frac{1}{4 \pi} \]

\(d.* a_T = \frac{d^2 s}{dt^2} = \sqrt{2} \); \(a_N = \left(\frac{ds}{dt} \right)^2 \kappa = (2 \pi \sqrt{2})^2 \cdot \frac{1}{4 \pi} = 2 \pi \)

(\text{check:} \ a_T \vec{r} + a_N \vec{n} = \frac{\sqrt{2}}{\sqrt{6}} \langle 1, 0, 1 \rangle + 2 \pi \langle 0, -1, 0 \rangle = \langle 1, -2 \pi, 1 \rangle = \vec{r} \)
\(@ t = 2 \pi \)

d. \(@ t = 2 \pi \), position = \(\langle 1, 2 \pi, 2 \pi^2 \rangle \)
\(\vec{B} = \langle \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \rangle \).
plane is \(\frac{1}{2 \sqrt{2}} (x - 1) + \frac{1}{\sqrt{2}} (z - 2 \pi^2) = 0 \).

2. alt. c.d.

a. \(@ t = 2 \pi \), \(\vec{r}' = \langle 2 \pi, 0, 2 \pi \rangle \)
\(\vec{r}'' = \langle 1, 2 \pi, 1 \rangle \).
\[\vec{r}' \times \vec{r}'' = \begin{vmatrix}
1 & \frac{1}{2} & \frac{1}{2} \\
1 & 2 \pi & 2 \pi \\
2 \pi & 0 & 2 \pi \\
\end{vmatrix} = -4 \pi^2 \vec{n} + 4 \pi^2 \vec{k}. \kappa = \frac{1}{4 \pi} \text{ (again)} \]

d. \(a_T = \frac{d^2 s}{dt^2} = \sqrt{2} \); \(a_N = \left(\frac{ds}{dt} \right)^2 \kappa = 2 \pi \text{ (again)} \)

e. \(\vec{r}(2 \pi) = \langle 1, -2 \pi, 2 \pi^2 \rangle \)
\(\vec{B} = \langle \frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \rangle \). plane is \(\frac{1}{\sqrt{2}} (x - 1) + \frac{1}{\sqrt{2}} (z - 2 \pi^2) = 0 \).

*Note \(a_T \) also = \(\frac{\vec{a} : \vec{v}}{|v|^2} = \vec{a} \cdot \left(\frac{\vec{v}}{|v|^2} \right) = \vec{a} \cdot \vec{T} \), the scalar projection of \(\vec{a} \) onto \(\vec{T} \).

Likewise \(a_N = \vec{a} \cdot \vec{N} \), \(a_N \) also = \(\frac{|\vec{a} : \vec{v}|}{|v|^2} = \sqrt{|\vec{a}|^2 - a_T^2} \).
3. \(s = \int_{t=0}^{t=1} \sqrt{1 + (2t^2)^2 + (-2t^4)^2} \, dt \)
\[
= \int_{t=0}^{t=1} \sqrt{1 + 4t^4 + 4t^8} \, dt
= \int_{1}^{2} \sqrt{(1 + 2t^4)^2} \, dt
\]
\[
= \int_{1}^{2} (1 + 2t^4) \, dt = t + \frac{2}{5}t^5 \bigg|_{1}^{2} = 1 + \frac{2}{5} = \frac{7}{5}.
\]

4. \(\vec{r} = \langle t^2, e^t, \arctan t \rangle \), \(\vec{r}' = \langle 2t, e^t, \frac{1}{1+t^2} \rangle \)

At \(t=1 \), \(\vec{p} = \langle 1, e, 0 \rangle \), \(\vec{r}' = \langle 2, e, 1 \rangle \), equation of line \(\vec{r}' \) and passing through \((1, e, 0) \) is
\[
X = 1 + 2t, \quad Y = e + te, \quad Z = t.
\]

4a) \(X = e + te, \quad Y = t, \quad Z = 1 + 2t. \)

5. \(\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a} \text{ and } \vec{b} \text{ are perpendicular.} \)

6. \(\vec{a} \times \vec{b} = \vec{0} \Rightarrow \vec{a} \text{ and } \vec{b} \text{ are parallel.} \)

5a) \(\vec{a} \times \vec{b} = \vec{0} \Rightarrow \vec{a}, \vec{b} \text{ parallel.} \)

5b) \(\vec{a} \cdot \vec{b} = 0 \Rightarrow \vec{a}, \vec{b} \text{ perpendicular.} \)

7. a) \(\vec{u} = \langle 1, -2, 1 \rangle, \quad \vec{w} = \langle 2, 1, -1 \rangle \)
\[
\vec{u} \cdot \vec{w} = 1 \cdot 2 + (-2) \cdot 1 + 1 \cdot (-1) = 0.
\]
\(\cos \theta = \frac{\vec{a} \cdot \vec{b}}{|\vec{a}| \cdot |\vec{b}|} = \frac{0}{1 \cdot 3} = 0 \).

b) \(\frac{\vec{w} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a} = \frac{-1}{6} \langle 1, -2, 1 \rangle = \langle -\frac{1}{6}, \frac{1}{3}, \frac{1}{6} \rangle. \)

7a) \(\vec{p} = \langle 1, -3, 1 \rangle, \quad \vec{w} = \langle 3, 1, -1 \rangle \), \(\theta = \cos^{-1} \left(\frac{-1}{11} \right) \).

b) \(\frac{\vec{w} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a} = \frac{-1}{11} \langle 1, -3, 1 \rangle = \langle -\frac{1}{11}, \frac{3}{11}, \frac{-1}{11} \rangle. \)

8. Plane must have the form \(2x - 2y + 3z = \text{const} \), so
\(2x - 2y + 3z = 6 + \pi \quad (act), \quad 2x - 2y + 3z = 4 + 2\pi. \)

a) \(\vec{b}_1 = \langle 1, -2, 0 \rangle, \quad \vec{b}_2 = \langle -1, 3, 1 \rangle. \quad \vec{v} = \vec{b}_1 \times \vec{b}_2 = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & -2 & 0 \\ 1 & 3 & 1 \end{vmatrix} = \langle -2, -1, 1 \rangle \)

a) \(\vec{v} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 1 & 2 & 0 \\ -1 & -3 & 1 \end{vmatrix} = \langle -2, -1, 5 \rangle. \)