1 (10 pts). Determine whether the series converges or diverges, and if it is convergent, find the sum.

$$\sum_{n=1}^{\infty} \ln \left(\frac{n^2}{3n^2 + 2} \right)$$

Solution: 1. (Source: 11.2.29) The series $$\sum_{n=1}^{\infty} \ln \left(\frac{n^2}{3n^2 + 2} \right)$$ diverges because the limit of its nth term $$\lim_{n \to \infty} \ln \left(\frac{n^2}{3n^2 + 2} \right) = \ln \left(\lim_{n \to \infty} \frac{n^2}{3n^2 + 2} \right) = \ln \left(\frac{1}{3} \right)$$ is not zero.
1 (10 pts). Determine whether the series converges or diverges, and if it is convergent, find the sum.

\[\sum_{n=1}^{\infty} \ln \left(\frac{n^2}{3n^2 + 2} \right) \]

Solution: 1. (Source: 11.2.29) The series \(\sum_{n=1}^{\infty} \ln \left(\frac{n^2}{3n^2 + 2} \right) \) diverges because the limit of its \(n \)th term \(\lim_{n \to \infty} \ln \left(\frac{n^2}{3n^2 + 2} \right) = \ln \left(\lim_{n \to \infty} \frac{n^2}{3n^2 + 2} \right) = \ln \left(\frac{1}{3} \right) \) is not zero.
1 (10 pts). Determine whether the series converges or diverges, and if it is convergent, find the sum.

\[\sum_{n=1}^{\infty} \ln \left(\frac{n^2}{3n^2 + 2} \right) \]

Solution: 1. (Source: 11.2.29) The series \[\sum_{n=1}^{\infty} \ln \left(\frac{n^2}{3n^2 + 2} \right) \] diverges because the limit of its \(n \)th term \[\lim_{n \to \infty} \ln \left(\frac{n^2}{3n^2 + 2} \right) = \ln \left(\lim_{n \to \infty} \frac{n^2}{3n^2 + 2} \right) = \ln \left(\frac{1}{3} \right) \] is not zero.
1 (10 pts). Determine whether the series converges or diverges, and if it is convergent, find the sum.

\[\sum_{n=1}^{\infty} \ln \left(\frac{n^2}{3n^2 + 2} \right) \]

Solution: 1. (Source: 11.2.29) The series \(\sum_{n=1}^{\infty} \ln \left(\frac{n^2}{3n^2 + 2} \right) \) diverges because the limit of its \(n \)th term \(\lim_{n \to \infty} \ln \left(\frac{n^2}{3n^2 + 2} \right) = \ln \left(\lim_{n \to \infty} \frac{n^2}{3n^2 + 2} \right) = \ln \left(\frac{1}{3} \right) \) is not zero.