1 (10 pts). Let R be the region in the xy-plane bounded by the curves $y = \ln x$, $y = 0$, and $x = e$.

a. Find the volume of the solid obtained by rotating R about the y-axis. Write your answer as a definite integral, but do not integrate.

b. Find the volume of the solid whose base is R and whose cross-sections perpendicular to the x-axis are squares with one side in R. Write your answer as a definite integral, but do not integrate.

Solution:

1. Here’s a sketch of R, sliced vertically:

 a. When one of these rectangles is rotated about $x = 0$, the result is a cylindrical shell. If we slice R horizontally and rotate, the result is a washer:

 There are two correct answers:

 $$dV = 2\pi x \ln x \, dx$$
 $$V = \int_1^e 2\pi x \ln x \, dx.$$
 $$dV = \pi (e^2 - (e^y)^2) \, dy$$
 $$V = \int_0^1 \pi (e^2 - e^{2y}) \, dy.$$

 b. In this non-rotational solid, each slice perpendicular to the x-axis has a square face and an infinitesimally small thickness. Here’s one slice:

 Its sidelength equals the height of the rectangle, $\ln x$, and its thickness is dx, so

 $$dV = (\ln x)^2 \, dx$$ and $$V = \int_1^e (\ln x)^2 \, dx.$$