In the statements below, A and B are matrices, V is a vector space, u, v, and w are vectors in V, and T is a linear map from V into another vector space.

Identify each statement as True or False.

1 (1 pts). $\text{Nul } A$ is the set of all solutions x to $Ax = 0$.
2 (1 pts). \mathbb{R}^5 is a subspace of \mathbb{R}^6.
3 (1 pts). If $A \sim B$, then the pivot columns of B are a basis for $\text{Col } A$.
4 (1 pts). \[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\] is a basis for the column space of \[
\begin{bmatrix}
1 & -1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{bmatrix}
\].
5 (1 pts). If the set of vectors $\{u, v, w\}$ is linearly dependent, then u must be a linear combination of v and w.
6 (1 pts). In any vector space, $\{0\}$ is linearly independent.
7 (1 pts). The set $\{T(x) \mid x \in V\}$ is called the domain of T.
8 (1 pts). If $T(u) = T(v)$, then $u - v$ is in the kernel of T.
9 (1 pts). $\text{span}\{1-t, 2+t, t^2-1\}$ is a subspace of \mathbb{P}_3.
10 (1 pts). The three vectors \[
\begin{bmatrix}
1 & 0 \\
1 & 0
\end{bmatrix}, \begin{bmatrix}
0 & 0 \\
0 & 1
\end{bmatrix}, \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\] are linearly independent.

Solutions:

1. **T.** Definition, p. 226.
2. **F.** \mathbb{R}^5 and \mathbb{R}^6 are disjoint; that is, they have no vectors in common.
3. **F.** The pivot columns of B are a basis for $\text{Col } B$, but this in not necessarily equal $\text{Col } A$.
 For example, let $A = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.
4. **T.** Since the matrix has a pivot in each row and column, its column space is \mathbb{R}^3, and
 the given set is the standard basis for \mathbb{R}^3.
5. **F.** One of the three must be a linear combination of the other two, but it needn’t be u.
 For example, consider $\{1, t, 2t\}$ in \mathbb{P}_1.
6. **F.** $\{0\}$ is linearly dependent, since $1 \cdot 0 = 0$ (without 1 equaling 0).
7. **F.** The set in question is the range of T, not the domain.
8. **T.** $\text{kernel } T = \{x \in V \mid T(x) = 0\}$. By linearity, $T(u - v) = T(u) - T(v) = 0$.
9. **T.** The span of any set of vectors is a vector space, and the three polynomials all belong
to \mathbb{P}_3, the polynomials of degree 3 or less.
10. **T.** $a \begin{bmatrix} 1 & 0 \\
1 & 0
\end{bmatrix} + b \begin{bmatrix} 0 & 0 \\
0 & 1
\end{bmatrix} + c \begin{bmatrix} 0 & 1 \\
0 & 0
\end{bmatrix} = \begin{bmatrix} a & c \\
\end{bmatrix}$, and if this equals
 $\begin{bmatrix} 0 & 0 \\
0 & 0
\end{bmatrix}$, then $a = b = c = 0$.