MATH 203–01 (Kunkle), Exam 2
100 pts, 50 minutes
Oct. 20, 2014
Page 1 of 1

Name: __________________________

No notes, books, electronic devices, or outside materials of any kind.

Read each problem carefully and simplify your answers. Unless otherwise indicated, supporting work will be required on every problem worth more than 2 points.

Source

Solve always means to find the general solution, if it exists.

4.3
1 (5 pts). Define what it means for a set of vectors \(\{v_1, v_2, v_3\} \) in a vector space \(V \) to be linearly independent.

2 (10 pts). Answer either a. or b. Clearly indicate which part you’re answering.

a. Prove that the polynomials \(\{1, (t + 2), (t + 2)^2\} \) are linearly independent.

b. Prove that if \(T : V \to W \) is linear and if \(\{v_1, v_2, v_3\} \) is linearly dependent in \(V \), then \(\{T(v_1), T(v_2), T(v_3)\} \) is linearly dependent in \(W \).

3.1, 3.2
3a (20 pts). Compute \(\det G \), if
\[
G = \begin{bmatrix}
1 & 1 & 2 & -2 \\
1 & -3 & 2 & 3 \\
1 & 5 & 2 & -2 \\
1 & -7 & -2 & 9
\end{bmatrix}.
\]

3b (8 pts). Express the element in row 3, column 2 of \(G^{-1} \) in terms of determinants, but do not evaluate.

3c (5 pts). Find all solutions to \(Gx = 0 \).

4.2, 4.5
4 (25 pts). Let \(H \) be the matrix
\[
H = \begin{bmatrix}
1 & -1 & -1 & 2 \\
2 & -2 & -2 & 4 \\
1 & -1 & 3 & 0 \\
-1 & 1 & 5 & -4
\end{bmatrix}.
\]

Find the following. Work in the space provided and label your five answers a-e.

a. A basis for \(\text{Col} \, H \)

b. A basis for \(\text{Row} \, H \)

c. A basis for \(\text{Nul} \, H \)

d. \(\text{rank} \, H \)

e. \(\det(GH) \), where \(G \) is the matrix in Problem 3.

4.4
5 (12 pts). Let \(B \) be the basis \(\left\{ \begin{bmatrix} 4 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1/3 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -1 \\ 1 \end{bmatrix} \right\} \) for \(\mathbb{R}^3 \). Find the coordinates of \(x = \begin{bmatrix} 1 \\ -2 \\ 2 \end{bmatrix} \) with respect to this basis. Hint: compute
\[
\begin{bmatrix}
4 & -1 & 0 \\
0 & 1/3 & -1 \\
0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
1/4 & 3/4 & 3/4 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}.
\]

4.5
6 (7 pts). Suppose \(C \) is a \(12 \times 20 \) matrix whose rows span a vector space of dimension 7. What is the dimension of the set of all solutions to \(Cx = 0 \)?

7 (4 pts). If \(\{u_1, u_2, u_3, u_4\} \) spans the vector space \(U \), what, if anything, can you conclude about the dimension of \(U \)? (You are not required to give reasons for your answer.)

8 (4 pts). Suppose that \(S \) is a linearly independent set of 4 vectors in a vector space \(W \), and that \(\text{dim} \, W = 4 \). What else, if anything, can you conclude about \(S \)? (You are not required to give reasons for your answer.)
1. \(v_1, v_2, v_3 \) is linearly independent if \(c_1 v_1 + c_2 v_2 + c_3 v_3 = 0 \Rightarrow c_1 = c_2 = c_3 = 0 \).

2a. Suppose \(a + b(t + 2) + c(t + 2)^2 = 0 \). Plug \(mt = -2 \Rightarrow a - 1 = 0 \).
 Differentiate: \(b + 2c(t + 2) = 0 \). Plug \(mt = -2 \Rightarrow b - 1 = 0 \).
 Differentiate: \(2c = 0 \Rightarrow c = 0 \).
 (Another solution: coordinate vectors are \((\frac{3}{2}), (\frac{1}{2}), (\frac{4}{2}) \), and these are linearly independent since there is a pivot in each column. 44.25 \(\Rightarrow \) polynomials are also linearly md.

2b. Suppose \(\{v_1, v_2, v_3\} \) linearly dependent. Then there exist scalars \(c_1, c_2, c_3, \) not all zero, for which \(c_1 v_1 + c_2 v_2 + c_3 v_3 = 0 \).
 Take \(T \) of both: \(T(c_1 v_1 + c_2 v_2 + c_3 v_3) = c_1 T(v_1) + c_2 T(v_2) + c_3 T(v_3) \)
 (by additivity and homogeneity); and this \(= T(0) = 0 \).
 Since \(c_1 T(v_1) + c_2 T(v_2) + c_3 T(v_3) = 0 \) and \(c_1, c_2, c_3 \) are not all zero,
 \(\{T(v_1), T(v_2), T(v_3)\} \) is linearly dependent.

3a. Compute \(|G| \) by row reduction.

<table>
<thead>
<tr>
<th>1 1 2</th>
<th>1 1 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1 -3 2</td>
<td>-2</td>
</tr>
<tr>
<td>1 5 2</td>
<td>0</td>
</tr>
<tr>
<td>1 -7 -2</td>
<td>0</td>
</tr>
</tbody>
</table>

1. \(v_2 \leftarrow v_3 - \frac{2}{3}v_1 \)
2. \(v_2 \leftarrow v_2 - v_1 \)
3. \(v_3 \leftarrow v_3 - 2v_2 \)

Answer: \(y = 1.4(-4) = -80 \).

Alt form: \(A \in I, \) then \(|A| \in 3 \).

Answer: \(4(-4) - 3 = -48 \).

3b. \(G^\dagger = \frac{1}{\det G} \text{adj}(G) \), so \(G^\dagger_{32} = \frac{1}{\det G} (\text{cofactor}_{32}) = -\frac{1}{1} \left| \begin{array}{ccc} 1 & 1 & -2 \\ 0 & 4 & 0 \\ 1 & 0 & -4 \\ \end{array} \right| = -\frac{1}{1} \left| \begin{array}{ccc} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 1 & -2 \\ \end{array} \right| = -\frac{1}{1} \left| \begin{array}{ccc} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 1 & -2 \\ \end{array} \right| = -\frac{1}{1} \left| \begin{array}{ccc} 1 & 2 & -2 \\ 0 & 0 & 0 \\ 0 & 1 & -2 \\ \end{array} \right|

3c. \(G \) is invertible b/c. \(\det G \neq 0 \). Therefore \(N \cap G = \{0\} \).

That is, only soln to \(Gx = 0 \) is \(x = 0 \).
4. \(H \sim \begin{pmatrix} 1 & -1 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & 4 & -2 \end{pmatrix} \sim \begin{pmatrix} 1 & -1 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1/2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \)

a. Pivot cols of \(H \) = \(\begin{pmatrix} 1 \\ -1 \\ -1 \\ 1/2 \end{pmatrix} \)

b. Pivot rows of \(A \) in any form = \(\begin{pmatrix} 1 & -1 & -1 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1/2 \\ 0 & 0 & 0 & 0 \end{pmatrix} \)

c. \(HW = 0 \). \(x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} x_2 - 3x_4/2 \\ x_2 \\ x_2 \\ 1/2x_4 \end{pmatrix} = x_2 \begin{pmatrix} 1/2 \\ 1/2 \\ 1/2 \\ 1/2 \end{pmatrix} + x_4 \begin{pmatrix} -3/2 \\ 0 \\ 0 \\ 0 \end{pmatrix}

\text{Basis} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -3/2 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\}. \text{(other correct ans. include} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -3/2 \\ 0 \\ 0 \\ 0 \end{pmatrix} \right\})

d. \text{Rank } H = \text{dim col } H = \text{dim Row } H = 2.

e. \text{det}(H) = \text{det}B \cdot \text{det } H = (\text{det} B) \cdot 0 \text{ (b.c. } H \text{ is not invertible}) = 0.

5. Check: product in \(HW = I \), so these matrices are inverses.

Coord. vector \(c \) satisfies \(\begin{pmatrix} 4 & -1 & 0 \\ 0 & 1/2 & 1/4 \\ 0 & 0 & 1 \end{pmatrix} c = x \), so \(c = \begin{pmatrix} 4 & -1 & 0 \\ 0 & 1/2 & 1/4 \\ 0 & 0 & 1 \end{pmatrix}^{-1} x = \begin{pmatrix} 1/4 & 3/4 & 3/4 \\ 0 & 0 & 1/2 \end{pmatrix} x = \begin{pmatrix} 1/4 \\ 0 \\ 0 \end{pmatrix} \)

\text{Att. coord} = \begin{pmatrix} 1/4 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 1/4 \\ 3/4 \\ 3/4 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1/4 \\ 0 \\ 0 \end{pmatrix}

6. \text{rank } C + \text{dim Nul } C = \# columns \text{ C}; \text{ rank } = \text{dim Row } C = 2.

7. \text{dim Nul } C = 20 \Rightarrow \text{dim Nul } C = 13.

\text{Att. rank }= 8 \Rightarrow \text{dim Nul } C = 12.

7. Every spanning set includes a basis, so \(\text{dim } \mathcal{U} \leq 4 \).

8. \(S \) is a basis for \(W \). (See Basis Thm, p. 259)

(\text{would also accept } S \text{ spans } W.)