MATH 120-04 (Kunkle), Quiz 2
10 pts, 10 minutes

Name:
Jan 25, 2024

1 (10 pts). Evaluate the limit, if it exists. Supporting work is required; one-word answers are not acceptable for full credit.
a. $\lim _{x \rightarrow 4} \frac{x^{2}-2 x-8}{x^{2}-9 x+20}$
b. $\lim _{x \rightarrow 5^{-}} \frac{x^{2}-2 x-8}{x^{2}-9 x+20}$
c. $\lim _{x \rightarrow 5^{+}} \frac{x^{2}-2 x-8}{x^{2}-9 x+20}$

Solution:

1a.(Source: 2.3.15,16) Factor and cancel:

$$
\lim _{x \rightarrow 4} \frac{(x-4)(x+2)}{(x-4)(x-5)}=\lim _{x \rightarrow 4} \frac{x+2}{x-5}=\frac{6}{-1}=-6 .
$$

1b.(Source: 2.3.14) $\lim _{x \rightarrow 5^{-}} \frac{x+2}{x-5}$ looks like " $\frac{7}{0}$," indicating blow-up. Examine the signs. The numerator is near 7 and therefore must be positive. When $x<5$ as in part b., $x-5<0$, so the fraction is $\pm=-$ and so

$$
\lim _{x \rightarrow 5^{-}} \frac{x+2}{x-5}=-\infty
$$

1c.(Source: 2.3.14) Continuing, when $x>5$, as in part c., $x-5>0$, so the fraction is $\frac{ \pm}{+}=+$ and so

$$
\lim _{x \rightarrow 5^{+}} \frac{x+2}{x-5}=\infty .
$$

math 120-11 (Kunkle), Quiz 2
10 pts, 10 minutes

Name:
Jan 25, 2024

1 (10 pts). Find the x-values at which the function

$$
f(x)= \begin{cases}x & \text { if } x<-1 \\ 1-x^{2} & \text { if }-1 \leq x \leq 1, \text { and } \\ 1 / x & \text { if } x>1\end{cases}
$$

is discontinuous. At which of these numbers is f continuous from the right, from the left, or neither? Supporting work is required, including a sketch the graph of f.

Solution:

1. (Source: 2.5.41-43)

The polynomials x and $1-x^{2}$ are continuous everywhere, and the rational function $1 / x$ is continuous on $[1, \infty)$ (in fact, it is continuous at all $x \neq 0$), so the only place f could be discontinuous is at the "breakpoints" $x=-1$ and $x=1$. At these, compare the function value with the one-sided limits:

$$
\begin{array}{rlrl}
\lim _{x \rightarrow-1^{-}} f(x)=\lim _{x \rightarrow-1^{-}} x=-1 & \lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} 1-x^{2} & =0 \\
\lim _{x \rightarrow-1^{+}} f(x)=\lim _{x \rightarrow-1^{+}} 1-x^{2}=0 & \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \frac{1}{x} & =1 \\
f(-1)=0 & f(1) & =0
\end{array}
$$

At both $x=1$ and $x=-1$, the one-sided limits disagree, so both $\lim _{x \rightarrow 1} f(x)$ and $\lim _{x \rightarrow-1} f(x)$ fail to exist. We conclude that f is discontinuous at $x=1$ and at $x=-1$.
f is continuous from the right at $x=-1$, because $\lim _{x \rightarrow-1^{+}} f(x)=0=f(-1)$.
f is continuous from the left at $x=1$, because $\lim _{x \rightarrow 1^{-}} f(x)=0=f(1)$.
The graph of f consists of pieces of the line $y=x$, the parabola $y=1-x^{2}$, and the graph of $y=1 / x$ (actually a hyperbola). The graph on the left shows these three functions; the graph of f is on the right.

