MATH 120-02 (Kunkle), Exam 2
Name:
Oct 3, 2023
Page 1 of 1
No notes, books, electronic devices, or outside materials of any kind.
Read each problem carefully and simplify your answers.
Unless otherwise indicated, supporting work will be required on every problem worth more than 3 points.
You are expected to know the values of all trig functions at multiples of $\pi / 4$ and of $\pi / 6$.
$1 \mathrm{a}(13 \mathrm{pts})$. Find $\frac{d y}{d x}$ along the curve $3+e^{(x y)}=x^{2}-\sin y$
$1 \mathrm{~b}(5 \mathrm{pts})$. Find an equation of the line tangent to the curve in 1 a at the point $(2,0)$.
$2(6 \mathrm{pts})$. Evaluate the limit: $\lim _{x \rightarrow 0} \frac{\sin (4 x)}{5 x}$. You will not receive credit for using l'Hospital's Rule (a technique learned later in this class) on this problem.

3 (11 pts). Find the x-values in $[0,2 \pi]$ where the line tangent to $y=x+2 \cos x$ is \ldots
a. horizontal.
b. parallel to $4 x+y=5$.
$4(38 \mathrm{pts})$. Find the derivative of the following functions. Simplification is not required.
a. $\frac{7}{x^{8}}-3 \sqrt[5]{x}+e^{2}$
b. $\sec ^{-1}\left(e^{x}\right)$
c. $(1+x)^{\tan x}$
d. $(\cot x)\left(\tan ^{-1} x\right)$
e. $\frac{\sec x}{1+\csc x}$
f. $\ln \left(\tan \left(\cot ^{-1} x\right)\right)$
g. $\sin ^{-1} x+\cos ^{-1} x$
h. $\ln \left(\frac{x^{2}+1}{(x+2)^{2}}\right)$
$5(10 \mathrm{pts})$. The graph of the function $f(x)$ appears in the figure at right. Sketch the graph of $f^{\prime}(x)$ on the axes provided.
$6(17 \mathrm{pts})$. Here are the values of $f(x)$ and $g(x)$ and their derivatives at $x=2,3$, and 4 .

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
2	4	-2	3	5
3	2	6	4	-3
4	3	-4	2	7

Evaluate the derivatives of the following functions at $x=3$. You can leave unfinished arithmetic (for example " $5(4-(-7)) /(1+2 \cdot 3)$ ") in your final answers.
a. $g(f(x))$
b. $f(x) g(x)$
c. $\frac{f(x)-g(x)}{g(x)}$

1a(13 pts). (Source: $3.5 .17,19$) Think of y as an unspecified function of x, differentiate both sides of $3+e^{(x y)}=x^{2}-\sin y$ with respect to x, and solve for $\frac{d y}{d x}$:

$$
\begin{array}{rl|r}
e^{(x y)}\left(y+x \frac{d y}{d x}\right) & =2 x-\cos y \frac{d y}{d x} & \cos y \frac{d y}{d x}+x e^{(x y)} \frac{d y}{d x}=2 x-y e^{(x y)} \\
y e^{(x y)}+x e^{(x y)} \frac{d y}{d x} & \left(\cos y+x e^{(x y)}\right) \frac{d y}{d x}=2 x-y e^{(x y)} \\
& =2 x-\cos y \frac{d y}{d x} & \frac{d y}{d x}=\frac{2 x-y e^{(x y)}}{\cos y+x e^{(x y)}}
\end{array}
$$

$1 \mathrm{~b}(5 \mathrm{pts})$. (Source: $3.5 .25-32$) At $(2,0)$, we compute $\frac{d y}{d x}=\frac{4-0}{\cos 0+2}=\frac{4}{3}$, so the point-slope equation of the line is $y=\frac{4}{3}(x-2)$.
$2(6 \mathrm{pts})$.(Source: 3.3.39-40) Because $4 x \rightarrow 0$ as $x \rightarrow 0$, and $\lim _{h \rightarrow 0} \frac{\sin h}{h}=1$, the limit in question is

$$
\lim _{x \rightarrow 0} \frac{\sin (4 x)}{5 x}=\lim _{x \rightarrow 0} \frac{\sin (4 x)}{4 x} \frac{4}{5}=1 \cdot \frac{4}{5}=\frac{4}{5}
$$

$3 \mathrm{a}(7 \mathrm{pts})$.(Source: 3.3.33) Set $\frac{d y}{d x}$ equal zero and solve for $x . \frac{d y}{d x}=1-2 \sin x=0$ implies $\sin x=\frac{1}{2}$. The x 's in $[0,2 \pi]$ whose sine is $\frac{1}{2}$ are $x=\frac{\pi}{6}$ and $x=\frac{5 \pi}{6}$.
$3 \mathrm{~b}(4 \mathrm{pts})$. The line $y=5-4 x$ has slope -4 , but $\frac{d y}{d x}=1-2 \sin x=-4$ implies $\sin x=\frac{5}{2}>1$, which has no solutions.
4. This problem uses the product, quotient, and chain rules, as well as the derivatives of some of the functions in the table below.
$\mathrm{a}(4 \mathrm{pts})$.(Source: $3 \cdot 1 \cdot 4,15,19)$

$$
\left(7 x^{-8}-3 x^{1 / 5}+\text { constant }\right)^{\prime}=-56 x^{-9}-\frac{3}{5} x^{-4 / 5}
$$

$\mathrm{b}(3 \mathrm{pts})$.(Source: 3.4.23) Chain rule:

$$
\left(\sec ^{-1}\left(e^{x}\right)\right)^{\prime}=\frac{1}{e^{x} \sqrt{\left(e^{x}\right)^{2}-1}} e^{x}, \text { or } \frac{1}{\sqrt{e^{2 x}-1}}
$$

$\mathrm{c}(7 \mathrm{pts})$.(Source: $3 \cdot 6,43-50$) Rewrite before differentiating: $(1+x)^{\tan x}=e^{\ln \left((1+x)^{\tan x}\right)}=e^{\tan x \ln (1+x)}$. Now differentiate with the chain rule, the product rule, and then the chain rule again:

$$
\begin{aligned}
& e^{\tan x \ln (1+x)}(\tan x \ln (1+x))^{\prime}= \\
& e^{\tan x \ln (1+x)}\left(\sec ^{2} x \ln (1+x)+\sec x \cdot \frac{1}{1+x} \cdot 1\right)
\end{aligned}
$$

$\mathrm{d}(4 \mathrm{pts})$.(Source: $3.3 \cdot 15,16$) Remember that $\tan ^{-1} x$ is the arctangent of x, not $\frac{1}{\tan x}$. Product rule:

$$
\begin{array}{r}
(\cot x)^{\prime}\left(\tan ^{-1} x\right)+(\cot x)\left(\tan ^{-1} x\right)^{\prime} \\
=\left(-\csc ^{2} x\right)\left(\tan ^{-1} x\right)+(\cot x)\left(\frac{1}{x^{2}+1}\right)
\end{array}
$$

$\mathrm{e}(6 \mathrm{pts})$.(Source: 3.3.4,11) Quotient rule:

$$
\begin{aligned}
& \frac{\sec ^{\prime} x(1+\csc x)-\sec x(1+\csc x)^{\prime}}{(1+\csc x)^{2}}= \\
& \frac{\sec x \tan x(1+\csc x)+\sec x \csc x \cot x}{(1+\csc x)^{2}}
\end{aligned}
$$

$f(x)$	$f^{\prime}(x)$
x^{n}	$n x^{n-1}$
$\ln \|x\|$	x^{-1}
e^{x}	e^{x}
$\sin x$	$\cos x$
$\cos x$	$-\sin x$
$\tan x$	$\sec ^{2} x$
$\cot x$	$-\csc ^{2} x$
$\sec x$	$\sec x \tan x$
$\csc ^{x}$	$-\csc x \cot x$
$\sin ^{-1} x$	$\frac{1}{\sqrt{1-x^{2}}}$
$\cos ^{-1} x$	$\frac{-1}{\sqrt{1-x^{2}}}$
$\tan ^{-1} x$	$\frac{1}{1+x^{2}}$
$\cot ^{-1} x$	$\frac{-1}{1+x^{2}}$
$\sec ^{-1} x$	$\frac{1}{x \sqrt{x^{2}-1}}$
$\csc ^{-1} x$	$\frac{-1}{x \sqrt{x^{2}-1}}$

$\mathrm{f}(5 \mathrm{pts})$.(Source: $3.6 .12,3.4 .42,3.5 .54) \quad \tan \left(\cot ^{-1} x\right)=\frac{1}{x}$, because $\cot \left(\cot ^{-1} x\right)=x$, and so $\ln \left(\tan \left(\cot ^{-1} x\right)\right)=\ln \left(\frac{1}{x}\right)=-\ln x$, the derivative of which is $-\frac{1}{x}$.
If, instead, you differentiated the function as it was originally given, then you'd use the chain rule twice:

$$
\frac{1}{\tan \left(\cot ^{-1} x\right)} \cdot\left(\tan \left(\cot ^{-1} x\right)\right)^{\prime}=\frac{1}{\tan \left(\cot ^{-1} x\right)} \cdot \sec ^{2}\left(\cot ^{-1} x\right) \cdot \frac{-1}{x^{2}+1} .
$$

$\mathrm{g}(2 \mathrm{pts})$.(Source: $3 \cdot 5 \cdot 55,58) \quad\left(\sin ^{-1} x+\cos ^{-1} x\right)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}+\frac{-1}{\sqrt{1-x^{2}}}=0$.
$\mathrm{h}(7 \mathrm{pts})$.(Source: 3.6 .13) It helps to simplify before differentiating:

$$
\ln \left(\frac{x^{2}+1}{(x+2)^{2}}\right)=\ln \left(x^{2}+1\right)-\ln \left((x+2)^{2}\right)=\ln \left(x^{2}+1\right)-2 \ln (x+2) .
$$

Now the derivative is

$$
\frac{1}{x^{2}+1} \cdot 2 x-2 \frac{1}{x+2} \cdot 1 .
$$

$5(10 \mathrm{pts})$. (Source: $2.8 .3,5,7$) Here's the graph of f and its derivative.
Note that when $y=f(x)$ has positive [negative] slope, $y=f^{\prime}(x)$ has positive [negative] altitude. The line tangent to $y=f(x)$ is horizontal near $x=-3$ and $x=1$, so $y=f^{\prime}(x)$ has zeros near -3 and 1. $f^{\prime} \rightarrow-\infty$ as $x \rightarrow 2^{-}$and as $x \rightarrow-\infty$, because the tangent line is becoming vertical and negatively sloped. To the right of $2, f^{\prime}$ is a positive constant, since f has positive constant slope. $f^{\prime}(2)$ does not exist because at $x=2, f$ has a corner (or cusp, or vertical tangent line, depending on your point of view).
6.(Source: 3.2.43, 3.4.63) In each part below, we must differentiate the given function, and then evaluate the result at $x=3$. Most errors on this problem were due to misunderstanding function notation, so read these solutions carefully.
$6 \mathrm{a}(4 \mathrm{pts})$. Chain Rule: At $x=3, g^{\prime}(f(x)) f^{\prime}(x)$ is $g^{\prime}(f(3)) f^{\prime}(3)=g^{\prime}(2) f^{\prime}(3)=5 \cdot 6=30$
$6 \mathrm{~b}(5 \mathrm{pts})$. Product Rule: At $x=3$,
$f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$ becomes

$f^{\prime}(3) g(3)+f(3) g^{\prime}(3)=6 \cdot 4+2 \cdot(-3)=18$
$6 \mathrm{c}(8 \mathrm{pts})$. Quotient Rule: The derivative is

$$
\frac{\left(f^{\prime}(x)-g^{\prime}(x)\right) g(x)-(f(x)-g(x)) g^{\prime}(x)}{(g(x))^{2}}
$$

At $x=3$, this is

$$
\frac{\left(f^{\prime}(3)-g^{\prime}(3)\right) g(3)-(f(3)-g(3)) g^{\prime}(3)}{(g(3))^{2}}=\frac{(6-(-3)) \cdot 4-(2-4) \cdot(-3)}{4^{2}}=-\frac{30}{16}
$$

Note that $\frac{f(x)-g(x)}{g(x)}=\frac{f(x)}{g(x)}-\frac{g(x)}{g(x)}=\frac{f(x)}{g(x)}-1$, so its derivative is the same as the derivative of $\frac{f(x)}{g(x)}$.

