0.1: The Binomial Theorem and Pascal's Triangle.

The formulas
\[(x + y)^2 = x^2 + 2xy + y^2, \text{ and} \]
\[(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3.\]

are special instances of the Binomial Theorem, which says that the coefficients in the expansion
\[(x + y)^n = x^n + ?x^{n-1}y + ?x^{n-2}y^2 + \ldots + ?x^2y^{n-2} + ?xy^{n-1} + y^n\]

are found in Pascal’s Triangle:

\[
\begin{array}{cccc}
1 & & & \\
1 & 1 & & \\
1 & 2 & 1 & \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
\end{array}
\]

Details can be found in http://kunklet.people.cofc.edu/MATH111/pascal.pdf

0.1.re.e1.
\[(x + y)^3 = x^3 + 3x^2y + 3xy^2 + y^3\]
\[(x + y)^4 = x^4 + 4x^3y + 6x^2y^2 + 4xy^3 + y^4\]

0.1.re.e2. Generate the next three rows of Pascal’s Triangle.

0.1.re.e3. Expand the following.

a. \((x + 3)^4\)
 b. \((u + v)^5\)
 c. \((u - v)^6\)
 d. \((x^3 + y)^4\)
 e. \((x - x^{-1})^5\)
 f. \((\xi - 2)^6\)

Answers

0.1.re.e2. 5th row: 1 5 10 10 5 1. 6th row: 1 6 15 20 15 6 1. 7th row: 1 7 21 35 35 21 7 1.
0.1.re.e3a. \(x^4 + 12x^3 + 54x^2 + 108x + 81\)
0.1.re.e3b. \(v^5 + 5v^4 + 10v^3 + 10v^2 + 5v + 1\)
0.1.re.e3c. \(u^6 - 6u^5v + 15u^4v^2 - 20u^3v^3 + 15u^2v^4 - 6uv^5 + v^6\)
0.1.re.e3d. \(x^{12} + 4x^9y + 6x^6y^2 + 4x^3y^3 + y^4\)
0.1.re.e3e. \(x^5 - 5x^3 + 10x - 10x^{-1} + 5x^{-3} + x^{-5}\)
0.1.re.e3f. \(\xi^6 - 12\xi^5 + 60\xi^4 - 160\xi^3 + 240\xi^2 - 192\xi + 64\)
Ap.D: Trigonometry

For a more complete review of trigonometry, see Appendix D of our text. The two basic functions in trigonometry are the sine and cosine, graphed here:

The other four trig functions are defined using sine and cosine:

\[
\begin{align*}
\tan x &= \frac{\sin x}{\cos x} & \cot x &= \frac{\cos x}{\sin x} \\
\sec x &= \frac{1}{\cos x} & \csc x &= \frac{1}{\sin x}
\end{align*}
\]

sin \(x \) and \(\cos x \) are defined for all real numbers \(x \), but \(\tan x \) and \(\sec x \) are undefined whenever \(\cos x = 0 \), and \(\cot x \) and \(\csc x \) are undefined whenever \(\sin x = 0 \).

By definition, \(\cos x \) and \(\sin x \) are the coordinates of the point on the **unit circle** (i.e., the circle of radius one centered at the origin) \(x \) radians counterclockwise from the positive horizontal axis.

Consequently, the ray through the origin \(x \) radians from the positive horizontal axis has slope \(\tan x \), and, when \(x \) is an acute angle, \(\cos x \) and \(\sin x \) are the legs of this right triangle with hypotenuse 1 and interior angle \(x \).
These basic trigonometric identities follow from the definitions of sine and cosine.

<table>
<thead>
<tr>
<th>PYTHAGOREAN IDENTITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sin^2 x + \cos^2 x = 1)</td>
</tr>
<tr>
<td>(\tan^2 x + 1 = \sec^2 x)</td>
</tr>
<tr>
<td>(1 + \cot^2 x = \csc^2 x)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EVEN & ODD IDENTITIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cos(-x) = \cos x)</td>
</tr>
<tr>
<td>(\sin(-x) = -\sin x)</td>
</tr>
</tbody>
</table>

Sketching the sine and cosine

The sine and cosine are periodic functions having period \(2\pi \), meaning

\[
\sin(x + 2\pi) = \sin x \quad \text{and} \quad \cos(x + 2\pi) = \cos x.
\]

To sketch one cycle of the sine, plot the vertical coordinates on the unit circle at the angles \(0, \pi/2, \pi, 3\pi/2, \) and \(2\pi \). Be careful to make these five points equally spaced horizontally and vertically. Then connect them with a smooth curve.

To sketch the cosine, start by plotting the horizontal coordinates on the unit circle at the same five angles.

Ap.D.re.e1. Sketch the graphs of the sine and cosine on the given interval. Label hashmarks so as to clearly indicate all points where \(y = -1, 0, 1 \) along your curve. (You can check your answers using Desmos.com.)

a. \([0, 2\pi]\)
b. \([0, 3\pi]\)
c. \([-\pi, \pi]\)
Known values of sine and cosine

We already know the values of sine and cosine at the four points where the unit circle intersects the x and y axes. By placing these two triangles:

![Triangles](image1)

around the unit circle like this:

![Unit Circle](image2)

we find the sines and cosines at 12 more points on the unit circle (and the infinitely many angles that reach those points).

Ap.D.re.e2. Find all angles whose cosine is $-\frac{1}{2}$.

We recognize $1/2$ as the short side of the 30-60-90 triangle, so for the cosine to be $-1/2$, the angle must be one of the two pictured at right. Find one angle that matches each drawing, for instance,

$$x = \pi - \pi/3 = 2\pi/3 \quad \text{and} \quad x = \pi + \pi/3 = 4\pi/3.$$

Then add all multiples of 2π to describe all angles that fit the drawings:

$$x = 2\pi/3 + 2\pi n \quad \text{and} \quad x = 4\pi/3 + 2\pi n \quad \text{(where } n \text{ is any integer)}.$$

1. $\sin x = -1/\sqrt{2}$
2. $\cos x = 0$
3. $\tan x = -1$
4. $\sec x = -2$
5. $\csc x = 2/\sqrt{3}$
6. $\cot x = \sqrt{3}$
Solving trigonometric equations

When the variable of the equation appears inside a trig function, first solve for the function, and then solve for the variable.

Ap.D.re.e4. Solve for \(x \) in the equation \(4 \sin^2 x - 8 \sin x + 3 = 0 \)

Solution: This is a quadratic equation in \(\sin x \) which can be solved by factoring:

\[
(2 \sin x - 3)(2 \sin x - 1) = 0
\]

which implies either \(\sin x = \frac{3}{2} \) or \(\sin x = \frac{1}{2} \). The first of these has no real solutions, so the solution set of the original equation is the same as the solution set of \(\sin x = \frac{1}{2} \), namely \(x = \pi/6 + 2\pi n \) or \(x = 5\pi/6 + 2\pi n \) (for any \(n \in \mathbb{Z} \)).

It sometimes help to use the Pythagorean identities to rewrite the equation entirely in terms of one trig function.

Ap.D.re.e5. Find all solutions \(x \) to the given equation.

a. \(1 - \sin t - 2 \cos^2 t = 0 \) b. \(3 \cos t - 2 \sin^2 t = 0 \) c. \(\sin^2 t + 3 \sin t + 2 - \cos^2 t = 0 \) d. \(1 - \cos^2 t = 0 \) e. \(\cos^2 t - 3 = 0 \) f. \(2 \sin^2 t - 2 \cos^2 t = 1 \)

The Law of Cosines

When we label the sides and any one angle of a triangle as shown in the figure, the Law of Cosines states that

\[
c^2 = a^2 + b^2 - 2ab \cos \theta.
\]

In case \(\theta \) is a right angle, the Law of Cosines reduces to the Pythagorean identity.

Ap.D.re.e6. Two ships leave the port of Charleston. One sails due east at a speed of 5 knots (nautical miles per hour) while the other sails in a direction 30° north of due east at 6 knots. What is the distance (in nautical miles) between the ships after two hours?

Answers

Ap.D.re.e3a. \(x = -\pi/4 + 2\pi n \) or \(x = -3\pi/4 + 2\pi n \) Ap.D.re.e3b. \(x = \pi/2 + 2\pi n \) or \(x = -\pi/2 + 2\pi n \)

Ap.D.re.e3c. \(x = 3\pi/4 + 2\pi n \) or \(x = 11\pi/4 + 2\pi n \) Ap.D.re.e3d. (same as in example Ap.D.re.e2)

Ap.D.re.e3e. \(x = \pi/3 + 2\pi n \) or \(x = 2\pi/3 + 2\pi n \) Ap.D.re.e3f. \(x = \pi/3 + 2\pi n \) or \(x = 4\pi/3 + 2\pi n \)

Ap.D.re.e5a. \(\sin t = -1/2 \) or 1, \(t = \pi/2 + 2\pi n, 7\pi/2 + 2\pi n, 11\pi/6 + 2\pi n \) Ap.D.re.e5b. \(\cos t = -2 \) (no sol’ns)

or 1/2, \(t = \pi/3 + 2\pi n, 5\pi/3 + 2\pi n \) Ap.D.re.e5c. \(\sin t = -1/2 \) or 1, \(t = 3\pi/2 + 2\pi n, 7\pi/6 + 2\pi n, 11\pi/6 + 2\pi n \)

Ap.D.re.e5d. \(\cos t = \pm 1, t = n\pi \) Ap.D.re.e5e. \(\cos t = \pm \sqrt{3} \) no real sol’ns Ap.D.re.e5f. \(\sin t = \pm \sqrt{3}/2, t = \pi/3 + 2\pi n, 2\pi/3 + 2\pi n, 4\pi/3 + 2\pi n, 5\pi/3 + 2\pi n \)

Ap.D.re.e6. \(\sqrt{100 + 144 - 2 \cdot 10 \cdot 12 \cos \pi/6} = \sqrt{244 - 120\sqrt{3}} \)