More problems for section 2.9 of Essentials of Precalculus with Calculus Previews by Zill and Dewar, 5e.

1. Find the derivative \(f'(x) \) of each function \(f(x) \) below. Then use your answer to find the slope of the line tangent to the curve \(y = f(x) \) at \(x = a \). Finally, find the equation of that tangent line.

 a. \(f(x) = 14 + 2x, \ a = -1 \)
 b. \(f(x) = 5x + 2, \ a = 3 \)
 c. \(f(x) = 2 - 3x, \ a = 0 \)

 d. \(f(x) = 4x^2 - 5x + 6, \ a = 0 \)
 e. \(f(x) = 2 + 3x - x^2, \ a = 1 \)
 f. \(f(x) = 11, \ a = 4 \)

 g. \(f(x) = x^3 + 3x, \ a = -2 \)
 h. \(f(x) = 2x^3 - 4x + 1, \ a = 3 \)
 i. \(f(x) = x^4 - x^2, \ a = -1 \)

 j. \(f(x) = \frac{1}{x + 2}, \ a = 1 \)
 k. \(f(x) = \frac{1}{2x + 3}, \ a = 0 \)
 l. \(f(x) = \frac{2}{3 - x}, \ a = 4 \)

 m. \(f(x) = \frac{4 - x}{3x}, \ a = 2 \)
 n. \(f(x) = (x + 1)^3 - 2, \ a = 1 \)
 o. \(f(x) = (x + 2)^2 - x^2, \ a = 3 \)

 p. \(f(x) = 2 - (1 - x)^3, \ a = -1 \)
 q. \(f(x) = \frac{x + 3}{x - 7}, \ a = -2 \)
 r. \(f(x) = \frac{4}{3x - 1}, \ a = 0 \)

 s. \(f(x) = \frac{2x}{x^2 + 3}, \ a = 2 \)
 t. \(f(x) = \sqrt{2x + 1}, \ a = 4 \)
 u. \(f(x) = 4 - \sqrt{2 + x}, \ a = 2 \)

 v. \(f(x) = 2 + \sqrt{3x + 4}, \ a = -1 \)
 w. \(f(x) = \sqrt{1 - 2x}, \ a = -2 \)
 x. \(f(x) = -\sqrt{3} - x, \ a = -22 \)

Answers

1a. \(f'(x) = 2, \ f'(-1) = 2, \ TL \) is \(y - 12 = 2(x + 1) \) \((TL \) is the same as the graph of \(f(x) \).)
1b. \(f'(x) = 5, \ f'(3) = 5, \ TL \) is \(y - 17 = 5(x - 3) \) \((TL \) is the same as the graph of \(f(x) \).)
1c. \(f'(x) = -3, \ f'(0) = -3, \ TL \) is \(y - 2 = -3x \) \((TL \) is the same as the graph of \(f(x) \).)
1d. \(f'(x) = 8x - 5, \ f'(0) = -5, \ TL \) is \(y - 6 = -5x \).
1e. \(f'(x) = -3 - 2x, \ f'(1) = -5, \ TL \) is \(y - 4 = -5(x - 1) \).
1f. \(f'(x) = 0, \ f'(4) = 0, \ TL \) is \(y = 11 \) \((TL \) is the same as the graph of \(f(x) \).)
1g. \(f'(x) = 3x^2 + 3, \ f'(-2) = 15, \ TL \) is \(y + 14 = 15(x + 2) \).
1h. \(f'(x) = 6x^2 - 4, \ f'(3) = 50, \ TL \) is \(y - 43 = 50(x - 3) \).
1i. \(f'(x) = 4x^3 - 2x, \ f'(-1) = -2, \ TL \) is \(y - 16 = -2(x + 1) \).
1j. \(f'(x) = \frac{1}{x^2 + 2}, \ f'(1) = \frac{1}{3}, \ TL \) is \(y - \frac{1}{3} = \frac{1}{3}(x - 1) \).
1k. \(f'(x) = \frac{1}{x^2 - 1}, \ f'(0) = \frac{1}{2}, \ TL \) is \(y - \frac{1}{2} = \frac{1}{2}(x - 1) \).
1l. \(f'(x) = \frac{1}{x^2 - 4}, \ f'(2) = \frac{1}{12}, \ TL \) is \(y - \frac{1}{12} = \frac{1}{12}(x - 2) \).
1m. \(f'(x) = 3 + 6x + 3x^2, \ f'(1) = 12, \ TL \) is \(y - 6 = 12(x - 1) \).
1n. \(f'(x) = 4, \ f'(3) = 4, \ TL \) is \(y - 16 = 4(x - 3) \).
1o. \(f'(x) = 3 - 6x + 3x^2, \ f'(-1) = 12, \ TL \) is \(y + 6 = 12(x + 1) \).
1p. \(f'(x) = \frac{x}{x^2 + 2}, \ f'(0) = -12, \ TL \) is \(y + 4 = -12x \).
1q. \(f'(x) = \frac{1}{x^2 + 4}, \ f'(-2) = \frac{1}{16}, \ TL \) is \(y + \frac{1}{8} = \frac{1}{8}(x + 2) \).
1r. \(f'(x) = \frac{x}{(x^2 + 1)^2}, \ f'(0) = -12, \ TL \) is \(y + 4 = -12x \).
1s. \(f'(x) = \frac{1}{(x + 5)^2}, \ f'(2) = \frac{1}{16}, \ TL \) is \(y - \frac{1}{16} = \frac{1}{16}(x - 2) \).
1t. \(f'(x) = \frac{x}{x^2 + 1}, \ f'(4) = \frac{1}{5}, \ TL \) is \(y - 3 = \frac{1}{5}(x - 1) \).
1u. \(f'(x) = \frac{1}{x^2 + 2}, \ f'(2) = \frac{1}{6}, \ TL \) is \(y - 2 = \frac{1}{6}(x - 2) \).
1v. \(f'(x) = \frac{x}{x^2 + 1}, \ f'(-1) = \frac{1}{2}, \ TL \) is \(y - 3 = \frac{1}{2}(x + 1) \).
1w. \(f'(x) = \frac{1}{x^2 + 2}, \ f'(-2) = \frac{2}{9}, \ TL \) is \(y - \sqrt{5} = \frac{2}{9}(x + 2) \).
1x. \(f'(x) = \frac{1}{x^2 + 2}, \ f'(-22) = \frac{1}{29}, \ TL \) is \(y + 5 = \frac{1}{29}(x + 22) \).