1. Find $f^{-1}(x)$ and its domain and range if $f(x) = \frac{2x}{5-3x}$. Label the domain and range clearly so I can tell which is which.

2. Find two functions $y = f(x)$ and $y = g(x)$ defined implicitly by the equation $(y - x^2)(1 - x - y) = 0$. Graph each.

3. Find a polynomial $p(x)$ of lowest possible degree whose graph is consistent with the graph shown at the right. Express $p(x)$ in factored form.

4. A closed rectangular box is to be constructed with a square base. The material for the base costs $3 per square foot, but the material for the top and vertical sides costs $1 per square foot. If the volume of the box is to be 3 square cubic feet, express the total cost of the building materials as a function of the length of a side of the base.

5. Find the difference quotient $\frac{f(x+h)-f(x)}{h}$ if $f(x) = x^3 - 4x + 1$. Cancel the factor h from top and bottom.

6. Find the quotient and remainder in the division $(x^4 + 3x + 8) ÷ (x^3 - 2x^2)$.

7. Show that $(x - 3)(x + 2)$ is a factor of $q(x) = x^4 + x^3 - 6x^2 - 14x - 12$. Then factor $q(x)$ completely and list all its zeros. Express any complex numbers in the form $a + ib$.

8a. If a and b are integers, list all the possible rational zeros of the polynomial $r(x) = 2x^3 + ax^2 + bx + 4$.

8b. Find all zeros of $s(x) = 2x^3 + 3x^2 - 10x + 4$ and factor $s(x)$ completely. Express any complex numbers in the form $a + ib$.
1. (Source: 2.8.41, more.1m) Solve for \(x \):

\[
y = f(x) = \frac{2x}{5 - 3x} \quad \quad 5y = 2x + 3xy
\]

\[
(5 - 3x)y = 2x \quad \quad 5y - 3xy = 2x
\]

\[
y = 2 + 3y = f^{-1}(y) = x
\]

so \(f^{-1}(x) = \frac{5x}{2 + 3x} \).

\(f^{-1}(x) \) is defined for all \(x \) except when \(2 + 3x = 0 \), so Domain \(f^{-1} \) is \((-\infty, -2/3) \cup (-2/3, \infty)\). Range of \(f^{-1} \) is the same as the Domain of \(f \). Since \(f \) is undefined only when \(5 - 3x = 0 \), its domain is \((-\infty, 5/3) \cup (5/3, \infty)\).

2. (Source: 2.7.7, 10) For a product to equal zero, one of the factors must equal zero, so

\[
y - x^2)(1 - x - y) = 0
\]

\[
y - x^2 = 0 \quad \text{or} \quad 1 - x - y = 0
\]

\[
y = x^2 \quad \text{or} \quad 1 - x = y
\]

The graphs are a parabola and the line of slope \(-1\) with \(y \)-intercept 1. (That means that the graph of the original equation is the union of these two.)

2. Alternate Solution: I don’t recommend it, but you could multiply out the polynomial and then use the quadratic equation to find \(f(x) \) and \(g(x) \), i.e., the two possible values of \(y \):

\[
-y^2 + (1 - x + x^2)y - x^2(1 - x) = 0 \implies y = \frac{-(1-x+x^2) \pm \sqrt{(1-x+x^2)^2-4x^2(1-x)}}{-2}
\]

which, after some serious algebra, simplifies to \(y = \frac{1-x+x^2 \pm [1-x-x^2]}{2} \). We already know what the two graphs together must look like, and from that we know the graphs of these two functions. We get the larger function using “+” and the smaller using “-”:

![Graphs](image-url)
3. \((y-x^2)(1-x-y) = 0 \)

\(y = \frac{1}{2}(1-x+x^2+|1-x-x^2|) \)

\(y = \frac{1}{2}(1-x+x^2-|1-x-x^2|) \)

(Source: 3.1.46, 3.3.61) \(p(x) \) has a zero of even multiplicity at \(x = -2 \) and a zero of multiplicity 1 at \(x = 3 \), so, to keep the degree as small as possible, \(p(x) = c(x+2)^2(x-3) \)

Choose \(c \) so as to make the \(y \)-intercept equal 1: \(1 = c(0+2)^2(0-3) = -12c \implies c = -\frac{1}{12} \). Therefore, \(p(x) = -\frac{1}{12}(x+2)^2(x-3) \).

4. \((\text{Source: 2.9.38}) \) Let \(x \) be the length of one side of the base and \(y \) the height of the box. Since cost = (cost per square foot)(area), the cost of materials for the box is $3 times the area of the base plus $1 times the area of the other sides:

\[
C = 3x^2 + x^2 + 4xy = 4x^2 + 4xy
\]

The constraint is that volume of the box, \(x^2y \), must equal 3. Solve for \(y \) in the constraint equation and substitute that in for \(y \) in the \(C \)-equation:

\(x^2y = 3 \implies y = 3x^{-2} \implies C = 4x^2 + 4x \cdot 3x^{-2} = 4x^2 + 12x^{-1} \)

5. \((\text{Source: 2.10.17, more.1h}) \)

\[
\frac{f(x+h) - f(x)}{h} = \frac{(x+h)^3 - 4(x+h) + 1 - (x^3 - 4x + 1)}{h}
\]

To expand \((x+h)^3 \), use the third row of Pascal’s triangle: 1 3 3 1. Then distribute, collect up like terms, factor and cancel:

\[
x^3 + 3x^2h + 3xh^2 + h^3 - 4x - 4h + 1 - x^3 + 4x - 1 = 3x^2h + 3xh^2 + h^3 - 4h
\]

\[
= \frac{h(3x^2 + 3xh + h^2 - 4)}{h} = 3x^2 + 3xh + h^2 - 4
\]
6. (Source: 3.2.7)

\[
x^3 - 2x^2 + \frac{x + 2}{-\left(x^4 - 2x^3\right)} + 3x + 8\]
\[
-\frac{2x^3}{-\left(2x^3 - 4x^2\right)} + 3x + 8
\]
\[
\frac{4x^2 + 3x + 8}{4x^2 + 3x + 8}
\]

The quotient is \(x + 2\) and the remainder is \(4x^2 + 3x + 8\).

7. (Source: 3.2.1-10, 23-32., 3.3.33) You could divide \(q(x)\) by \((x - 3)(x + 2) = x^2 - x - 6\) using long division, but it’s easier to divide twice synthetically:

\[
\begin{array}{cccccc}
3 & | & 1 & 1 & -6 & -14 & -12 \\
 & -2 & | & 1 & 4 & 6 & 4 & 0 \\
 & & 1 & 2 & 2 & | & 0 \\
\end{array}
\]

Consequently, \(q(x) = (x - 3)(x + 2)(x^2 + 2x + 2)\). You could find the zeros of the quadratic by the quadratic formula, or by completing the square as shown here:

\[
0 = x^2 + 2x + 2 = x^2 + 2x + 1 + 1 = (x + 1)^2 + 1 \Rightarrow (x + 1)^2 = -1 \Rightarrow x + 1 = \pm i \Rightarrow x = -1 \pm i
\]

Therefore, \(q(x) = (x - 3)(x + 2)(x + 1 - i)(x + 1 + i)\), and its zeros are \(x = 3, -2, -1 + i,\) and \(-1 - i\).

8a. (Source: 3.4.4) The only possible rational zeros have numerators that divide 4 and denominators that divide 2:

\[
\pm \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2}, \frac{1}{4}, \frac{1}{2} \right\} = \pm \left\{\frac{1}{2}, \frac{1}{4}, \frac{1}{2} \right\}
\]

8b. (Source: 3.4.more.1q) Of the possible rational roots in part a, \(1/2\) is the only zero:

\[
\begin{array}{cccc}
1/2 & | & 2 & 3 & -10 & 4 \\
 & -1 & | & 2 & 4 & -8 & 0 \\
\end{array}
\]

So, \(s(x) = (x - 1/2)(2x^2 + 4x - 8) = 2(x - 1/2)(x^2 + 2x - 4)\) Now find the zeros of the quadratic either by completing the square or the quadratic formula, as shown here:

\[
x = \frac{1}{2}(-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-4)}) = \frac{1}{2}(-2 \pm \sqrt{20}) = \frac{1}{2}(-2 \pm 2\sqrt{5}) = -1 \pm \sqrt{5}.
\]

Therefore

\[
s(x) = 2(x - 1/2)(x - (-1 + \sqrt{5}))(x - (-1 - \sqrt{5}))
\]

\[
= 2(x - 1/2)(x + 1 - \sqrt{5})(x + 1 + \sqrt{5})
\]

and its zeros are \(x = 1/2, -1 + \sqrt{5}\) and \(-1 - \sqrt{5}\).