1 (10 pts). Find all intercepts and asymptotes of \(y = \frac{2x^2 + 5x - 12}{2x - 1} \).

You are not required to graph this curve.

Solution:

1. (Source: 3.5.more.1p) \(y \)-intercept: \(y = \frac{-12}{-1} = 12 \) when \(x = 0 \).

 \(x \)-intercepts: \(y = \frac{2x^2 + 5x - 12}{2x - 1} = 0 \) implies \(0 = 2x^2 + 5x - 12 = (2x - 3)(x + 4) \), or \(x = \frac{3}{2}, x = -4 \).

 The numerator and denominator have no factors in common, so a vertical asymptote occurs when the denominator is zero. That is, \(x = \frac{1}{2} \).

 The degree of numerator is one more than that of the denominator, so there’s a slant asymptote. To find it, perform long division.

 \[
 \begin{array}{r|ll}
 & x & + 3 \\
 \hline
 2x - 1 & 2x^2 & + 5x & - 12 \\
 & (2x^2 & - x) \\
 \cline{2-3}
 & 6x & - 12 \\
 & -(6x & - 3) \\
 \cline{2-3}
 & & 9 \\
 \end{array}
 \]

 (This means that \(\frac{2x^2 + 5x - 12}{2x - 1} = x + 3 - \frac{9}{2x - 1} \), which is \(\approx x + 3 \) when \(x \) is very large.) Therefore, \(y = x + 3 \) is a slant asymptote.

 (There is no horizontal asymptote, since a rational function can’t have both an HA and an SA.)