1. Find all real solutions for x and simplify your answers:

 (a) $2x^2 = 6 - x$
 (b) $\frac{x}{x - 2} + \frac{1}{x + 3} = \frac{2x + 1}{x^2 + x - 6}$
 (c) $x^2 + 2x - 2 = 0$

 (d) $x^4 - 8x^2 - 9 = 0$
 (e) $-5 = x + \sqrt{x} + 17$
 (f) $x^3 + 2x^2 - 3x - 6 = 0$
 (g) $(2x - 1)^{1/3} = 2$
 (h) $x^6 + 3x^3 - 40 = 0$
 (i) $7 - 4(x + 2) = 3x + 5$

2. Simplify each of the following. Write any polynomials in standard form.

 (a) $\frac{2 - \frac{1}{2}}{3 + 1}$
 (b) $\frac{1}{4} - \frac{x}{x}$
 (c) $5x^2 + x - 3(x - 2)^2$
 (d) $5(x + 1)^3$

 (e) $\frac{x^3 + 8}{x + 2}$
 (f) $\frac{x^2 + 4}{x^2 - 6} \cdot \frac{x^2 - 4}{x^6}$
 (g) $\frac{(x - 5) + 7}{(x - 5)(x + 2)}$

3. Factor completely:

 (a) $9x^2 - 25y^2$
 (b) $x^4 + 3x^2 - 4$
 (c) $a^3 - 27b^3$
 (d) $y^3 + 2y^2 - 9y - 18$

 (e) $4a^2(3x - 1) - 9(3x - 1)$
 (f) $27x^3 + 1$
 (g) $8x^2 - 14x - 15$

4. Let $f(x) = \frac{x}{2} - 2$, $g(x) = x^2 - 3$. Find and simplify:

 (a) $(f \circ g)(x)$
 (b) $(g \circ f)(x)$
 (c) $g(x+h)$
 (d) $f^{-1}(x)$
 (e) $(g \circ g)(x)$
 (f) $-f(x)$
 (g) $f(-x)$

5. Consider the quadratic function $f(x) = -2x^2 - 8x + 10$.

 (a) Find the vertex.
 (b) Find the y-intercept
 (c) Find any x-intercept(s)

6. Solve each of the following. Write your answer in interval notation.

 (a) $-7 \leq 1 - 2x < 3$
 (b) $\frac{5 - 3x}{4} \geq \frac{x - 8}{5}$
 (c) $2x^2 + x > 15$
 (d) $\frac{3x - 2}{x + 1} \leq 2$

7. Find an equation for each line. Write in slope-intercept form where possible.

 (a) Through the points $(-1, 4)$ and $(5, 2)$.
 (b) Through the points $(3, -2)$ and $(3, 1)$.
 (c) Parallel to the line $x - 2y + 6 = 0$ and containing the point $(-4, 3)$.
 (d) Parallel to the line $y = 4$ and containing the point $(5, -2)$.
 (e) Perpendicular to the line $3x + y - 7 = 0$ and containing the point $(1, -1)$.

8. Find the center and radius of each of the following circles:

 (a) $x^2 + y^2 + 6x + 8 = 0$
 (b) $x^2 + y^2 - 2x + 4y - 2 = 0$

9. (a) Find the y-intercept of the line $5x + 2y - 3 = 0$.

 (b) Find the slope of the line $5x + 2y - 3 = 0$.

10. Find the y-intercept, the zeros and the multiplicity of each, and sketch the graph of: $f(x) = -x^3 + 3x^2$.

11. Find each of the following: (a) $3a^2 - 5ab^3$ when $a = -4$ and $b = -2$.

12. Find the domain for each function:
 (a) \[g(x) = \frac{3x}{x^2 + 16} \]
 (b) \[h(x) = \sqrt{6 - 2x} \]
 (c) \[f(x) = \frac{1 - x}{x^2 - 9} \]

13. Simplify completely, reducing all fractions.
 (a) \[8^{-4/3} \]
 (b) \[\frac{(2a^{-3/2}b^3)^4}{ab^6} \]
 (c) \[\left(\frac{16}{9}\right)^{-1/2} \]
 (d) \[\frac{1}{x - 4} - \frac{7}{x^2 - x - 12} \]
 (e) \[\sqrt[3]{45x^{13}} \]
 (f) \[\frac{8}{a^2 + 2a} - \frac{4}{a} \]
 (g) \[\sqrt{18} - \sqrt{2} \]

14. An open box with a square base is to be made from a square piece of sheet metal 9 inches on a side by cutting out a square from each corner and turning up the sides. Express the volume \(V \) of the box in terms of the length \(x \) of the side of the square cut from each corner.

15. Consider the two points \(A = (3, -2) \) and \(B = (5, 4) \).
 (a) Find the midpoint of the line segment joining the points \(A \) and \(B \).
 (b) Find the distance between the points \(A \) and \(B \).

16. Solve for \(x \):
 (a) \[4^{x-2} = \frac{1}{8} \]
 (b) \[\left(\frac{1}{3}\right)^{x-5} = 81 \]
 (c) \[e^{3x-4} = 7 \]
 (d) \[\log_2(6x - 1) = 4 \]

17. (a) Find the equation of the quadratic function shown to the right with vertex \((-2, 3)\) and y-intercept \((0, -3)\).
 (b) Find the range of this function.
 (c) Find the domain of this function.
 (d) Find the x-intercepts.

18. Compute the following:
 (a) \[\log_5 25 \]
 (b) \[\log_2 \left(2^{10}\right) \]
 (c) \[\log_7 7 \]
 (d) \[\log_8 1 \]
 (e) \[\log_3 \left(\frac{1}{9}\right) \]

19. Consider the function \(f(x) = 2^x - 2 \).
 (a) Find the y-intercept.
 (b) Find any x-intercepts.

20. When and where is the Final Exam for this course?
21. The graph of \(y = f(x) \) is shown below. Draw the graph of \(y = f^{-1}(x) \).

22. Solve the system of equations \[
\begin{align*}
2x + 2y &= 5 \\
4x + y &= 1
\end{align*}
\].

23. Solve for \(a \): \(3x = \frac{a - 2b}{k + a} \).

24. Find the domain: \(f(x) = \sqrt{x^2 - x - 6} \).

25. Find equations of the polynomials graphs shown below.

26. Use the graph of the function \(f \) shown below to answer parts (a) – (e).

(a) Find \(f(2) \).
(b) For what values of \(x \) is \(f(x) = 0 \) ?
(c) What is the domain of \(f \)?
(d) What is the range of \(f \)?
(e) How many times does the graph of \(y = -2 \) cross the graph of \(f \)?
(f) Find \(f(3) \).
27. For the functions given, find any x-intercepts, y-intercepts, and give the domain.

(a) \(f(x) = \frac{3x - 2}{x + 1} \)
(b) \(f(x) = \frac{x + 5}{x^2 - 9} \)
(c) \(f(x) = \frac{x^2 - 3x - 4}{x - 2} \)

28. Rationalize the denominator and simplify your answer:

(a) \(\frac{6}{\sqrt{10}} \)
(b) \(\frac{2}{5 - \sqrt{3}} \)

29. Find the quotient and remainder when \(2x^4 - 5x^3 + x - 7 \) is divided by \(x^2 + 3 \).

30. For \(f(x) = 5x^2 + x - 3 \), find \(\frac{f(x + h) - f(x)}{h} \) and simplify your answer.

31. Which of the following is/are functions?

A. \(x^2 + y^2 = 9 \)
B.
C.

32. Find the area of the shaded region. Express answer in terms of \(\pi \).

(a)
(b)

33. Karla has received a graduation present of $4,000. She invests part of it in a certificate of deposit (CD) and the rest in a bond. At the end of one year she gets a combined total of $218 in interest from the two investments. The CD had an annual interest rate of 4% and the bond an annual interest rate of 6%. How much was invested in the bond?
ANSWERS

1. (a) \(\frac{3}{2}, -2 \) (b) 1 (c) \(-1 \pm \sqrt{3}\) (d) 3, -3 (e) -8 (f) \(\pm \sqrt{3} \), -2 (g) \(\frac{9}{2} \)
 (h) \(-2, \sqrt{5}\) (i) \(-6/7\)

2. (a) 9/10 (b) \(\frac{x}{x^2 - 4} \) (c) \(2x^2 + 13x - 12 \) (d) \(5x^3 + 15x^2 + 15x + 5 \) (e) \(x^2 - 2x + 4 \)
 (f) \(\frac{x - 2}{x^2(x - 3)} \) (g) \(\frac{1}{x - 5} \)

3. (a) \((3x - 5y)(3x + 5y)\) (b) \((x^2 + 4)(x - 1)(x + 1)\) (c) \((a - 3b)(a^2 + 3ab + 9b^2)\)
 (d) \((y + 3)(y - 3)(y + 2)\) (e) \((2a - 3)(2a + 3)(3x - 1)\) (f) \((3x + 1)(9x^2 - 3x + 1)\)
 (g) \((2x - 5)(4x + 3)\)

4. (a) \(\frac{x^2 - 7}{2} \) (b) \(\frac{x^2 - 8x + 4}{4} \) (c) \(x^2 + 2xh + h^2 - 3 \) (d) \(f^{-1}(x) = 2x + 4 \) (e) \(x^4 - 6x^2 + 6 \)
 (f) \(-\frac{x}{2} + 2 \) (g) \(-\frac{x}{2} - 2 \)

5. (a) \((-2, 18)\) (b) \((0, 10)\) (c) \((-5, 0), (1, 0)\)

6. (a) \((-1, 4]\) (b) \((\infty, 57/10]\) (c) \((\infty, -3) \cup (5/2, \infty)\) (d) \((-1, 4]\)

7. (a) \(y = -\frac{1}{3}x + \frac{11}{3} \) (b) \(x = 3 \) (c) \(y = \frac{1}{2}x + 5 \) (d) \(y = -2 \) (e) \(y = \frac{1}{3}x - \frac{4}{3} \)

8. CENTER RADIUS 9. (a) 3/2 (b) -5/2
 (a) \((-3, 0)\) 1
 (b) \((1, -2)\) \(\sqrt{7} \)
10. y-intercept: (0,0) Zeros and multiplicities: 0, multiplicity 2; 3, multiplicity 1.

11. (a) \(91/2 \) (b) 29/4

12. (a) All real numbers (b) \((\infty, 3]\)
 (c) All real numbers except -3, 3.

13. (a) \(\frac{1}{16} \) (b) \(\frac{16b^{12}}{a^7} \) (c) \(\frac{3}{4} \) (d) \(\frac{1}{x + 3} \) (e) \(3x^6 \sqrt{5x} \) (f) \(\frac{-4}{a + 2} \) (g) \(2\sqrt{2} \)

14. \(V = (9 - 2x)^2 \times x \) 15. (a) (4, 1) (b) \(2\sqrt{10} \)
16. (a) \(\frac{9}{4}\) (b) 1 (c) \(\frac{4 + \ln 7}{3}\) (d) \(\frac{17}{6}\)

17. (a) \(f(x) = -\frac{3}{2}(x + 2)^2 + 3\) (b) \((-\infty, 3]\) (c) All real numbers (d) \(-2 \pm \sqrt{2}\)

18. (a) 2 (b) 10 (c) 1 (d) 0 (e) -2

19. (a) (0, -1) (b) (1, 0)

20.

21. \(y = f^{-1}(x)\)

22. \(x = -\frac{1}{2}, y = 3\)

23. \(a = \frac{3kx + 2b}{1 - 3x}\) or \(a = \frac{-3kx - 2b}{3x - 1}\)

24. \((-\infty, -2] \cup [3, \infty)\)

25. (a) \(y = \frac{5}{8}(x + 1)(x - 2)(x - 4)\) (b) \(y = -4x^2(x + 2)^2\)

26. (a) -1 (b) 1, 3 (c) [-3, 5] (d) [-1, 2] (e) 0 times (f) 0

27. | x-intercepts | y-intercept | Domain |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) (2/3, 0)</td>
<td>(0, -2)</td>
<td>{x: x \neq -1}</td>
</tr>
<tr>
<td>(b) (-5, 0)</td>
<td>(0, -5/9)</td>
<td>{x: x \neq -3, x \neq 3}</td>
</tr>
<tr>
<td>(c) (-1, 0), (4, 0)</td>
<td>(0, 2)</td>
<td>{x: x \neq 3}</td>
</tr>
</tbody>
</table>

28. (a) \(\frac{3\sqrt{10}}{5}\) (b) \(\frac{5 + \sqrt{3}}{11}\)

29. Quotient: \(2x^2 - 5x - 6\) Remainder: 16x + 11

30. \(10x + 5h + 1\)

31. Function: C

32. (a) 64 - 16\(\pi\) square units (b) \(\frac{\pi}{2} - 1\) square units

33. $2900