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Abstract

The problem of Favard interpolation from subsets of a rectangular lattice is addressed, paying

particular attention to two desirable properties of the interpolant: localness and a bound independent

of the aspect ratio of the lattice. We see circumstances in which these are mutually exclusive and

constructions that offer one but not the other.
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1. Introduction

An interpolation theorem of Favard [1] states that, if f is a real-valued function on
an increasing sequence of real numbers (mi)i∈I and if n is a positive integer, then f has a
smooth extension F whose nth derivative is bounded by f ’s nth divided differences:

|DnF | ≤ C(n)max
i

|∆(mi, . . . , mi+n)f |.

That is, f has an extension whose nth derivative is not more than a constant times its
necessary minimum size. Favard’s extension F depends locally and linearly on f , and the
constant C(n) is independent of both f and the data points (mi)i∈I . (See [8, Thm. 3.1]
for the proof of this and more in case (mi)I is bi-infinite, i.e., I = Z. Favard’s original
result for finite I follows easily.)

This result is the motivation for what could be called the Favard Interpolation Prob-
lem, or FIP for short: to find an extension of function values (or data) on a discrete set
of points (or data sites) in R

k so that, for some particular n, the nth derivatives of the
extension are no more than a constant times some nth multivariate divided differences of
the data, which here we take to mean f ’s tensor product divided differences of total order
n. These are a natural choice for their recurrence relations and their dependence solely on
function values at points, but they limit the data sets we can consider to subsets of the
Cartesian product of k sequences of real numbers. As it turns out [8, Thm. 4.5], if n > 1,
these sequences must be arithmetic for the FIP to have a solution, effectively forcing the
data set to lie on a lattice MZ

k for some k × k diagonal matrix M .
(See [6, 7] for results on multivariate divided differences that consist entirely of func-

tion evaluations.)
This paper is a continuation of earlier work [9] on a specific formulation of the FIP

(Problem 3.1 below) dealing with the case that the function f is defined only on some
proper subset of MZ

k. It’s a multivariate analogue of Favard’s original problem in case
the data set is finite, but while the finite case follows easily from the infinite case in one
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variable, the same is not true in several variables. The FIP is solvable on every lattice
[5] but may or may not have a solution on a subset of the same lattice, depending on the
geometry of that set [9].

Previously [9, Thm. 5.5], it was discovered that when the data set satisfies a simple
geometric condition (Condition 4.15 below), Problem 3.1 has a local and linear solution
for which the constant in (3.3) is independent of the data set. This paper deals with what
happens when this condition is not met, and the results fall into two parts.

First, when the data set fails to meet Condition 4.15, we can’t rule out a local solution
to the FIP, but we can prove (Section 4) that there’s a limit to how local any solution can
be. If the constant in (3.3) is to be independent of M (in which case we say that the
solution is scale-independent), then localness is limited even more. On some sets which
violate Condition 4.15, the FIP has no scale-independent solution which deserves to be
called local.

Second, we give two constructions that produce a local but scale-dependent solution
on some data sets (Section 5), and a scale-independent but nonlocal (or less local) solution
on others (Section 6), including, in both cases, sets on which such solutions are known via
results in Section 4 to be the only ones possible.

The multivariate Favard interpolation theorem from [5] has been used by Holtby [2,
3] to arrive at bounds on solutions to multivariate difference equations and by Preston [10]
in the study of solutions to partial differential equations modeling the motion of whips
and chains. Holtby’s work also relies on a result from [4] that has only been published (in
significantly extended form) as [9, Thm. 5.5].

We begin by establishing some notation in Section 2 and give a precise statement of
the problem under consideration in Section 3.

2. Notation

The ith component of a point x in R
k is denoted x(i). If M is a k × k matrix, then

the image of x ∈ R
k under M is the product Mx of M and (the column vector) x. If X

is a subset of Rk, then
MX := {Mx : x ∈ X}.

If M is a positive diagonal matrix, its aspect ratio is

r(M) := max
i,j

M(i, i)/M(j, j).

For x and y in R
k, we say x ≤ y if x(i) ≤ y(i) for all i and x < y if x(i) < y(i) for all

i. Note that x ≤ y and x 6= y do not imply x < y. Let

[x, y] := {u ∈ R
k : x ≤ u ≤ y},

The elements of Zk are calledmultiintegers, and the multiinteger whose every component
is 1 is denoted

1 := (1, 1, . . . , 1).
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In case x and y are in Z
k, let

{x, . . . , y} := Z
k ∩ [x, y].

If z is a multiinteger, then the set [z, z + 1] is called a cell. For instance, a cell in R
3 is a

closed cube of volume one with multiinteger vertices.
We’ll use the usual ± notation for addition of sets, or of sets and vectors. For instance,

z+[0, 1] = [z, z+1]. The set A−B should not be confused with A\B, i.e., the intersection
of A and Bc := the complement of B.

If Ω is a set in R
k, define

ZΩ := Ω ∩ Z
k,

the set of all multiintegers in Ω, and abbreviate the L∞(Ω) norm as

‖ · ‖Ω := ‖ · ‖L∞(Ω).

The vector ei is the ith column of the k×k identity matrix. The set of multiindices,
i.e., those multiintegers with nonnegative components, is written Z

k
+
. If α is a multiindex,

then α! :=
∏

i(α(i)!), and |α| :=
∑

i α(i). The αth power function is denoted

()α : x ∈ R
k 7→ xα :=

k
∏

i=1

x(i)α(i).

The gradient operator is denoted

D :=

[

∂

∂x(1)
,

∂

∂x(2)
, · · · ,

∂

∂x(k)

]

,

so that, naturally,

Dα :=

(

∂

∂x(1)

)α(1)

· · ·

(

∂

∂x(k)

)α(k)

.

Let
∆(x0, . . . , xn)f

denote the nth divided difference of f at the real numbers x0, . . . , xn, with the usual
meaning if some xi = xj . When z ∈ Z

k and α ∈ Z
k
+, define

♦α
z :=

k
⊗

i=1

∆(z(i), z(i) + 1, . . . , z(i) + α(i)),

that is, the tensor product divided difference that acts on k-variate functions by applying
∆(z(i), z(i) + 1, . . . , z(i) + α(i)) in the ith variable for each i = 1, . . . , k. For any positive
diagonal matrix M , define

♦α
M,z : f 7→ diag(M)−α♦α

z

(

f ◦M
)

.

The total order of Dα and of ♦α
z is |α|. Define the polynomial spaces

Π<n := span{()α : |α| < n}

and
Π<n1 := span{()α : ∀i α(i) < n}.
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3. The problem and an immediate consequence

Problem 3.1. Let n and k be positive integers, and let Ω be a connected union of
cells in R

k with the property that no nonzero polynomial in Π<n is identically zero on
ZΩ (i.e., ZΩ is total for Π<n). Let M be a positive diagonal matrix. Find an operator
FΩ,M mapping functions f defined on MZΩ to functions FΩ,Mf possessing all derivatives
of total order n on MΩ so that

(3.2) FΩ,Mf = f on MZΩ

and

(3.3) max
|α|=n

‖DαFΩ,Mf‖L∞(MΩ) ≤ Cmax
{

‖♦α
M,zf‖ : |α| = n, [z, z + α] ⊂ Ω

}

for some constant C independent of f .

The condition that ZΩ (and therefore MZΩ) is total for Π<n does not appear in the
problem as stated in [9] but leads to some conclusions regarding any solution FΩ,M and its
localness. For instance, (3.3) implies that FΩ,M maps Π<n into itself, and, since nothing
in Π<n \ {0} is zero on MZΩ, FΩ,M must reproduce Π<n:

Lemma 3.4. If FΩ,M solves Problem 3.1 and if f ∈ Π<n, then FΩ,Mf = f .

For instance, FΩ,M0 = 0 even if FΩ,M is nonlinear.

4. Local and scale-independent solutions

A solution FΩ,M to Problem 3.1 is called scale-independent when the constant C in
(3.3) is independent of M and local when both of the following conditions are true. First,
for every cell U = [u, u+ 1] in Ω and every positive diagonal matrix M , there exists a set

σU,M ⊂ ZΩ

such that, for any function f : MZΩ → R, the restriction of FΩ,Mf to the set MU depends
entirely on f ’s values on MσU,M . Second, the set of multiintegers σU,M − u is bounded
independently of U and M .

In Theorem 4.10 and the examples that follow, we see that, for some sets Ω, there are
limits to how small the bound on σU,M −u can be if FΩ,M is to be both scale-independent
and local.

We begin with some elementary observations about σU,M .

Lemma 4.1. The following are true whenever FΩ,M is a local solution to Problem 3.1 and
U = [u, u+ 1] is a cell in Ω.
(4.2) {u, . . . , u+ 1} ⊂ σU,M .
(4.3) If f = p on MσU,M for some p ∈ Π<n, then FΩ,Mf |MU = p|MU .
(4.4) No nonzero p ∈ Π<n is identically zero on σU,M .
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(4.5) #{z(i) : z ∈ σU,M} ≥ n for every i ∈ {1, . . . , k}.

(4.6) The diameter of σU,M in every coordinate direction is ≥ n− 1.

Proof: (4.2): Because FΩ,Mf = f on MZΩ, to change f on M{u, . . . , u+1} is to change
the values of FΩ,Mf at points in M [u, u+ 1].

(4.3): Since f = p on MσU,M , the restrictions of FΩ,Mf and of FΩ,Mp to MU must
be the same. By Lemma 3.4, FΩ,Mp = p.

(4.4): If p ∈ Π<n is identically zero on σU,M , then p◦M−1 ∈ Π<n is identically zero on
MσU,M , and therefore FΩ,M (p ◦M−1) = FΩ,M0 = 0 on MU . By Lemma 3.4, p ◦M−1 = 0
on MU , and therefore p is identically zero.

(4.5): Suppose that, for some i, the number of distinct elements in A := {z(i) : z ∈
σU,M} is less than n. Then the nonzero polynomial p(x) :=

∏

c∈A

(

x(i)− c
)

is 0 on σU,M ,
contradicting (4.4).

(4.6): If the diameter of σU,M in some coordinate direction ei is < n−1, then #{z(i) :
z ∈ σU,M} < n, contradicting (4.5).

Example 4.7: Let Ω be the two-toned shaded subset of R2 in Figure 4.8, and let the points
marked • be the multiinteger points ZΩ of Ω. No nonzero polynomial of degree less than
3 vanishes on ZΩ, so Ω satisfies the hypotheses of Problem 3.1 with n = 3. Let U be the
cell filled with the darker shade of gray.

By (4.6), if there is a local solution FΩ,M to Problem 3.1 on Ω, then for each positive
diagonal matrix M , the set σU,M cannot be contained in the points marked /. That is,
the restriction of FΩ,If to U cannot depend solely on the values of f at the bottom two
rows of multiintegers.

U

Figure 4.8 (n = 3)

Even more can be said about σU,M in case FΩ,M is scale-independent. For instance,
as will be seen in Example 4.16, if Ω and ZΩ are the sets pictured in Figure 4.9, and if
FΩ,M is a local and scale-independent solution to Problem 3.1, then, as r(M) → ∞, either
σU,M must include a point marked only 1 (i.e., not also marked 0) or σV,M must include
a point marked only 0. The next theorem is a generalization of this example.
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Figure 4.9 (n = 3)

A subset ξ of ZΩ × {0, 1} is called a multivalued function from ZΩ into {0, 1} if,
for each z in ZΩ, there is a point in ξ whose first coordinate is z. When the point (z, i)
belongs to ξ, we write ξ(z) = i. The set {z ∈ ZΩ : ξ(z) = i} is denoted ξ−1(i). Note that
ξ−1(1) and ξ−1(0) are not necessarily disjoint.

Theorem 4.10. Let n, k, and Ω be as in Problem 3.1. Choose integers i, j, and c so that
i ∈ {1, . . . , k} and c ∈ {j, . . . , j + n− 2}. Choose a set Λ ⊂ {e1, . . . , ek} \ {ei}.

Let E be a connected component of {x ∈ Ω : x(i) = c}. Let U and V be cells in Ω so
that there exists a path L in E from U to V traveling only in directions in span(Λ).

Let

Z
i,j
Ω := {z ∈ ZΩ : z(i) ∈ {j, . . . , j + n− 2}},

and let ξ be a multivalued function from ZΩ into {0, 1} satisfying the following three
conditions.
(4.11) ξ−1(0) ∩ ξ−1(1) = Z

i,j
Ω .

(That is, ξ is multivalued exactly on Z
i,j
Ω .)

(4.12) ξ−1(1) \ ξ−1(0) is finite.
(That is, ξ is 1 at only finitely many points outside of Zi,j

Ω .)

(4.13) If em ∈ Λ and if both z and z+em are in ZΩ \Zi,j
Ω and the line segment [z, z+em]

lies in Ω, then ξ(z) = ξ(z + em).
(That is, where it is single valued, ξ is constant at the multiintegers along lines in Ω

in the directions of Λ.)
Suppose also that Problem 3.1 has a local and scale-independent solution FΩ,M and

that the nth derivatives of FΩ,Mf are integrable for all functions f on MZΩ. Then it is
impossible for both σU,M to remain a subset of ξ−1(0) and σV,M to remain a subset of
ξ−1(1) as r(M) → ∞.
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One could always construct a multivalued function ξ to satisfy (4.11), (4.12), and
(4.13) by defining ξ equal both 0 and 1 on Z

i,j
Ω and 0 elsewhere (although in that case the

conclusion of Theorem 4.10 is trivial).

Proof: Define the function
g := ξp,

where
p(x) :=

(

x(i)− j
)(

x(i)− j − 1
)

· · ·
(

x(i)− j − n+ 2
)

.

Note that p = 0 on Z
i,j
Ω , so, by (4.11), g is single-valued on ZΩ. Since g is supported on

the finite set ξ−1(1) \ ξ−1(0), the tensor product divided differences

(4.14) {♦α
z g : |α| = n, [z, z + α] ⊂ Ω}

are bounded. What’s more, the only nonzero members of (4.14) are those for which
α ∈ span(Λc), since p and ξ are constant in the directions Λ.

For any positive diagonal matrix M , define the functions

pM := p ◦M−1 gM := g ◦M−1.

If σV,M ⊂ ξ−1(1) for some positive diagonal matrix M , then gM = pM on MσV,M and
so, by (4.3), FΩ,MgM = pM on MV . Similarly, if σU,M ⊂ ξ−1(0) for some M , then gM = 0
on MσU,M and FΩ,MgM = 0 on MU .

For any number ε > 0, define Mε to be the diagonal matrix given by the rule

Mε(ℓ, ℓ) :=
{

ε if eℓ ∈ Λ, and
1 otherwise.

The nonzero members of
{

♦α
Mε,z

gMε
: |α| = n, [z, z + α] ⊂ Ω

}

are exactly the same as those in (4.14) and thus are bounded independently of ε, say by a
constant K.

Let a and b be the endpoints in U and V , respectively, of the path L. If both
σU,Mε

⊂ ξ−1(0) and σV,Mε
⊂ ξ−1(1) for all ε > 0, then the path integral of the gradient

∫

MεL

(

DDn−1
ei

FΩ,Mε
gMε

(x)
)T

dx = Dn−1
ei

FΩ,Mε
gMε

|Mεb
Mεa

= (n− 1)!.

On the other hand, this integral is bounded above by the length of the path MεL times
the maximum of the nth derivatives of FΩ,Mε

gMε
on MεΩ times some constant B(n, k):

(n− 1)! ≤ ε length(L)B(n, k) max
|α|=n

‖DαFΩ,Mε
gMε

‖MεΩ

so that, by (3.3),
(n− 1)! ≤ ε length(L)B(n, k) · C ·K,

where, by hypothesis, C is independent of ε. Letting ε → 0 arrives at a contradiction and
completes the proof.
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Earlier [9, Thm. 5.5], it was seen that Problem 3.1 has a local, linear, scale-independent
solution when Ω satisfies the following geometric condition [9, Cond. 5.1].

Condition 4.15. For every integer i in {1, . . . , k} and every integer c and every con-
nected component E of {x ∈ Ω : x(i) = c}, there exists an integer jE in {c− n+ 1, . . . , c}
so that, for every point x in E,

x+ (jE − x(i))ei + ei[0, n− 1] ⊂ Ω.

(That is, the closed line segment between the two points

(

x(1), . . . , x(i),
jE

. . . , x(k)
)

and
(

x(1), . . . , x(i),
jE + n− 1

. . . , x(k)
)

is contained entirely in Ω.)
To put it loosely, a set Ω violates Condition 4.15 when it is too narrow in the direction

ei along some E. To apply Theorem 4.10 to such an Ω, choose cells U and V intersecting E
as far apart as possible, choose directions Λ 6∋ ei spanning a path in E from U to V , define
ξ−1(1) ∩ ξ−1(0) to be some Z

i,j
Ω containing the multiinteger points of E, and assign the

remaining points in ZΩ to either ξ−1(1) or ξ−1(0) so as to satisfy (4.12) and (4.13). One
could trivially do this by choosing U = V and defining ξ = 0 on ZΩ \Zi,j

Ω , but the strength
of the conclusion of Theorem 4.10 depends on how far one can make U from ξ−1(1)\ξ−1(0)
and, at the same time, V from ξ−1(0) \ ξ−1(1). In some instances, including Examples 4.7
and 4.16, we can see that [9, Thm. 5.5] fails to produce a local, scale-independent solution
because, practically speaking, no such solution exists.

Example 4.16: For instance, let k = 2, let Ω be the shaded subset of R2 in Figure 4.9, and
let the points marked • be the multiinteger points ZΩ.

Let n = 3, i = 2, and c = 1, so that E in Condition 4.15 is the line segment
along which x(2) = 1 in Ω . Because there’s no integer jE in {−1, 0, 1} for which

x+ (jE − 1)e2 + e2[0, 2] ⊂ Ω for all x ∈ E, the set Ω violates Condition 4.15, and [9, Thm.
5.5] fails to produce a local, scale-independent solution to Problem 3.1 on Ω.

To apply Theorem 4.10, let j = 0 and Λ = {e1}. Pick U and V to be the cells as
marked in the figure, and let ξ be the multivalued function whose values at each point •
in ZΩ are marked.

Line (4.11) is true, since ξ = both 0 and 1 only on Z
i,j
Ω = Z

2,0
Ω , the points z in ZΩ

at which z(2) = 0 or 1. Line (4.12) is trivially true, since ZΩ is finite, and line (4.13)
is true, since ξ is constant at the elements of ZΩ \ Z

2,0
Ω lying on lines in Ω parallel to

e1. Theorem 4.10 states that, as r(M) → ∞, it is impossible for both σU,M ⊂ ξ−1(0)
and σV,M ⊂ ξ−1(1). That is, if FΩ,M is scale-independent, then as r(M) → ∞, either
FΩ,Mf MU must depend on f at some point not marked 0 or FΩ,Mf MV must depend on
f at some point not marked 1.

Example 4.17: The set Ω in Figure 4.18 violates Condition 4.15 when k = i = 2, c =
0, and n = 3, but here the conclusion of Theorem 4.10 is much weaker than in the
previous example. The constancy of ξ along (horizontal) lines parallel to e1 as required by
(4.13) makes it impossible for any U and V to both be very far from ξ−1(1) \ ξ−1(0) and
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ξ−1(0) \ ξ−1(1), respectively. The requirement that the interpolant on U must depend on
some data points not marked 0, or that its values on V must depend on some data points
not marked 1 would hardly make a solution nonlocal in a practical sense. (Just such a
solution is constructed in Example 6.12.)
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Figure 4.18 (n = 3)

5. A local but scale-dependent solution

In this section and the next, we discuss Problem 3.1 on sets violating Condition
4.15. Under some additional assumptions on Ω, we produce interpolants that are the best
possible in light of Theorem 4.10: one that is local but scale-dependent (Theorem 5.3) and
one that is scale-independent but potentially nonlocal (Theorem 6.7). In both of these,
and unlike the interpolant produced in [9, Thm. 5.5], the constant in (3.3) depends on Ω,
but it does so in a quantifiable way. In (5.8), it depends on the integer KΩ in Condition
5.1, while in (6.11) it depends on the map f 7→ f+, which in turn depends on how many
times one must apply Theorem 6.1 to go from Ω to Ω+.

If w ∈ Z
k, let

[[w]] := [w,w + (n− 1)1]

and
Rw : RZ[[w]] → Π<n1

be the linear operator that maps a function f defined on Z[[w]] to its unique interpolant
Rwf in Π<n1 .

Condition 5.1. There exists a mapping w : ZΩ → ZΩ : u 7→ wu and a positive integer
KΩ with the following two properties. First, u ∈ [[wu]] ⊂ Ω for each u ∈ ZΩ. Second, if u
and v are in ZΩ and are both contained in some cell in Ω, then there exists a sequence

wu = p0, p1, p2, . . . , pℓ = wv

of at most 1+KΩ points in ZΩ such that each [[pi]] ⊂ Ω and every two adjacent terms pi−1

and pi differ by exactly one in exactly one coordinate. (That is, ∀i∃j so that pi − pi−1 =
±ej .)
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Example 5.2: If n = 4 and Ω is the two-toned region in Figure 5.20 whose multiinteger
points ZΩ are marked •, then Ω satisfies Condition 5.1 with KΩ = 19. In fact, Ω is itself
the union of the 20 sets [pi, pi+31] for the multiintegers marked p0, . . . , p19 in that figure.

Theorem 5.3. Let n, k, and Ω be as in Problem 3.1, and suppose that Ω satisfies Con-
dition 5.1. Then there exists a mapping GΩ from the set of all positive diagonal matrices
M and functions f : MZΩ → R to functions GΩ,Mf with the following properties:
(5.4) GΩ,Mf ∈ C∞(MΩ).
(5.5) GΩ,Mf = f on MZΩ.
(5.6) GΩ,Mf depends linearly on f .
(5.7) GΩ,Mf depends locally on f . Specifically, σU,M ⊂ {u − (n − 1)1 , . . . , u + n1} for
any cell U = [u, u+ 1] ⊂ Ω.
(5.8) There exists a constant C(n, k,KΩ) so that, for any cell U = [u, u+ 1] in Ω,

max {‖DαGΩ,Mf‖MU : |α| = n} ≤ C(k, n,KΩ)r(M)nmax0|♦
α
M,zf |

where max0 is taken over all z ∈ Z
k and α ∈ Z

k
+
for which |α| = n, [z, z + α] ⊂ Ω and

‖z − u‖∞ ≤ KΩ + 2n− 2.

Proof: It will suffice to prove Theorem 5.3 in case M is the k × k identity matrix, since
the general result then follows for

(5.9) GΩ,Mf :=
(

GΩ,I

(

f ◦M)
)

)

◦M−1.

Assume that M is the identity for the remainder of the proof.
Choose an infinitely differentiable function Ψ : Rk → R for which

(5.10) suppΨ ⊂ [−1 , 1] and
∑

v∈Zk

Ψ(· − v) = 1.

Then, for any u and v in Z
k,

(5.11) Ψ(u− v) =
{

1 if u = v, and
0 otherwise.

Furthermore, on [u, u + 1], the only nonzero terms of the sum in (5.10) correspond to
v ∈ {u, . . . , u+ 1}, so

(5.12)
∑

v∈{u,...,u+1}

Ψ(· − v) = 1 on [u, u+ 1].

Define the operator

GΩ,I :=
∑

v∈ZΩ

Ψ(· − v)Rwv

and suppose that f : ZΩ → R. By Condition 5.1, the interpolation points for each Rwv
lie

in ZΩ, so GΩ,If is well defined. (5.4) is immediate.
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Since each Rwv
is linear, so is GΩ,I , proving (5.6). What’s more, GΩ,I is local: on

[u, u+1], the values of GΩ,If are determined by the values of f at the interpolation points
of the operators {Rwv

: u ≤ v ≤ u + 1}. These points are at most n − 1 units from v in
each coordinate and therefore lie in {u− (n− 1)1 , . . . , u+ n1}, proving (5.7).

If u ∈ ZΩ, then

GΩ,If(u) =
∑

v∈ZΩ

Ψ(u− v)Rwv
f(v) = Rwu

f(u),

by (5.11), and this equals f(u), since u is one of the interpolation points of the operator
Rwu

. This proves (5.5).
Next, fix an α ∈ Z

k
+ for which |α| = n and a cell [u, u + 1] ⊂ Ω. Equation (5.12)

implies that, on [u, u+ 1],

(5.13) GΩ,If = Rwu
f +

∑

v∈{u,...,u+1}

Ψ(· − v)(Rwv
−Rwu

)f.

To prove (5.8), it will suffice to bound the αth derivatives of Rwu
f and of Ψ(· − v)(Rwv

−
Rwu

)f by some of the divided differences found in the right side of (5.8) times a constant
depending on n, k, α, and KΩ.

Write Rwu
f as

Rwu
f =

∑

0≤β<1

♦β
wu

f

where Nβ is the polynomial

Nβ : Rk → R : x 7→
∏

1≤i≤k

0≤j<β(i)

(

x(i)− j
)

.

The αth derivative of Nβ is zero unless α ≤ β, so

DαRwu
f =

∑

α≤β<n1

DαNβ(· − wu)♦
β
wu

f.

Therefore

(5.14) ‖DαRwu
f‖[u,u+1] ≤

∑

α≤β<n1

‖DαNβ(·+ u− wu)‖[0,1]|♦
β
wu

f |.

It is not hard to show that, for any multiindices α and γ and multiinteger z,

(5.15) ♦γ
z♦

α
· =

(

γ + α

α

)

♦γ+α
z ,

where
(

γ + α

α

)

:=
(γ + α)!

α!γ!
.
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So, each tensor product divided difference ♦β
wu

in (5.14) is a linear combination of

{♦α
z : wu ≤ z ≤ wu + β − α}

with coefficients that can bounded by some constant C0,n,k depending on n and k. In ad-
dition, [z, z+α] ⊂ Ω for each such ♦α

z , because [[wu]] ⊂ Ω by Condition 5.1. Consequently,

‖DαRwu
f‖[u,u+1] ≤ C1,n,kmax1‖D

αNβ(·+ t)‖[0,1]max2|♦
α
z f |

where max1 is taken over all β and t in {0, . . . , (n− 1)1}, and max2 is taken over all z in
{u−(n−1)1 , . . . , u+(n−1)1} for which [z, z+α] ⊂ Ω, and C1,n,k is a constant depending
on n and k.

Next, we’ll bound the αth derivative of the sum in (5.13).
For any v ∈ {u, . . . , u+ 1}, let

wu = p0, p1, . . . , pℓ = wv

be the sequence of points guaranteed by Condition 5.1 and rewrite the term in (5.13) as

(Rwv
−Rwu

)f =
ℓ

∑

j=1

(Rpj
−Rpj−1

)f.

For each j in this sum, pj and pj−1 differ by one in exactly one coordinate, say the ith.
Let p denote the point with the smaller ith coordinate. Then q := p+ ei is the other.

The polynomial (Rq−Rp)f has degree < n in each variable. As such, it can be written

(5.16) (Rq −Rp)f =
∑

0≤β<n1

Nβ(· − q)♦β
q (Rq −Rp)f.

Since Rqf and Rpf agree at those interpolation points common to both Rq and Rp,
♦β

q (Rq −Rp)f = 0 unless β(i) = n− 1. For any such β,

♦β
qRqf = ♦β

q f

(since Rqf = f on {q, . . . , q + β}) and

♦β
qRpf =

∑

β≤γ<n1

♦β
qNγ(· − p)♦γ

pf.

Any γ in this sum must satisfy γ(i) = n − 1, since β(i) = n − 1. Since p = q in all
components except the ith,

♦β
qNγ(· − p) = ♦β

pNγ(· − p) =
{

1 if β = γ, and
0 otherwise.
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Consequently, ♦β
qRpf = ♦β

pf , and (5.16) becomes

(Rq −Rp)f =
∑

0≤β<n1
β(i)=n−1

Nβ(· − q)(♦β
q −♦β

p )f

=
∑

0≤β<n1
β(i)=n−1

Nβ(· − q)n♦β+ei
p f.

Therefore

Dα
(

Ψ(· − v)(Rq −Rp)f
)

=
∑

0≤β<n1
β(i)=n−1

Dα
(

Ψ(· − v)Nβ(· − q)
)

n♦β+ei
p f,

and

‖Dα
(

Ψ(· − v)(Rq −Rp)f
)

‖[u,u+1]

≤
∑

0≤β<n1
β(i)=n−1

‖Dα
(

Ψ(· − (v − u))Nβ(·+ u− q)
)

‖[0,1]n|♦
β+ei
p f |.

By (5.15), each ♦β+ei
p above is a linear combination of

{♦nei
z : p ≤ z ≤ p+ β − (n− 1)ei}

with coefficients that can be bounded above by some constant C2,n,k depending on n and
k. Any such z must lie in {u−(n−1+KΩ)1 , . . . , u+(2n−2+KΩ)1}, because β ≤ (n−1)1
and

(5.17) ‖u− p‖∞ ≤ ‖u− wu‖∞ + ‖wu − p‖∞ ≤ n− 1 +KΩ.

Furthermore, [z, z + nei] ⊂ [[p]] ∪ [[q]], which lies in Ω by Condition 5.1. By the argument
in (5.17) again, ‖u− q‖∞ ≤ n− 1 +KΩ. Consequently,

(5.18)
‖Dα

(

Ψ(· − v)(Rq −Rp)f
∥

∥

[u,u+1]

≤ C3,n,kmax3‖D
α
(

Ψ(· − t)Nβ(·+ s)
)

‖[0,1]max4|♦
nei
z f |,

where, max3 is taken over all multiindices β < n1, all t ∈ {0, 1}, and all

s ∈ {−(n− 1 +KΩ)1 , . . . , (n− 1 +KΩ)1},

max4 is taken over all z ∈ {u − (n − 1 + KΩ)1 , . . . , u + (2n − 2 + KΩ)1} for which
[z, z + nei] ⊂ Ω, and C3,n,k is a constant depending on n and k. Therefore

∥

∥

∥
Dα

∑

u≤v≤u+1

Ψ(· − v)(Rwv
−Rwu

)f
∥

∥

∥

[u,u+1]

is less or equal the right side of (5.18) times 2kKΩ. This competes the proof of (5.8) and
of Theorem 5.3.



Tom Kunkle, http://kunklet.people.cofc.edu/ May 15, 2015
kunklet@cofc.edu, (843) 953-5921, fax: (843) 953-1410 Page 14

It may seem paradoxical that, to bound the derivatives of GΩ,If on U , the right side
of (5.8) must include tensor product divided differences not supported on σU,M . However,
such a situation must occur if, as in the next example, these functionals are needed to span
some locally supported nth difference, i.e., a linear combination of point evaluations that
vanishes on Π<n [9, Def. 3.4].

Example 5.19: Suppose that n = 4 and that Ω is the two-toned region in Figure 5.20
whose multiinteger points ZΩ are marked •. Let Θ be the subset of Ω that is filled with
the darker shade of gray and whose multiinteger points ZΘ are also marked ©.

As seen in Example 5.2, Ω satisfies Condition 5.1 withKΩ = 19. Theorem 5.3 therefore
guarantees that Problem 3.1 has a solution, albeit a scale-dependent one, on Ω.
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Figure 5.20 (n = 4)

By choosing wu to be p0 for all u ∈ {(−2, 0), . . . , (1, 3)} and p19 for all other u in
ZΘ, one can construct GΩ,I so that the restriction of GΩ,If to Θ depends solely on f ’s
values on ZΘ. However, the fourth total order derivatives of GΩ,If or, for that matter, of
any interpolant to f , cannot be bounded by the fourth total order tensor product divided
differences of f supported on ZΘ. That is, Problem 3.1 has no solution on Θ.

To see this, observe that the function

f(x) :=

{

0 if x(2) ≥ 0
x(1)

(

x(1)− 1
)

x(2) if x(2) < 0

is annihilated by each of the fourth total order tensor product divided differences supported
on ZΘ but that the fourth divided difference of f in the direction e1 − e2 at the points
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marked is nonzero. Consequently, any smooth interpolant to f on ZΘ must have a
nonzero fourth derivative somewhere along the line from (−2, 3) to (2,−1). (See also [9,
Ex. 3.11].)

6. A scale-independent but nonlocal solution

In this last section, we address Problem 3.1 once more on sets violating Condition
4.15. By Theorem 4.10, we can’t expect solutions to be both scale-independent and local,
but under an additional assumption on Ω, we construct a solution (Theorem 6.7) that is
scale-independent and nonlocal, or at least less local than in [9, Thm. 5.5]. The main idea
is to extend f : ZΩ → R to a larger domain, one point at a time, without increasing the
nth divided differences of f too much (Theorem 6.1), until Ω has been replaced by a larger
set satisfying Condition 4.15.

First, we make two definitions needed for the statement of the next result.
If x ∈ R

k, define 1x to be the characteristic function of the support of x:

1x(j) :=

{

1 if x(j) 6= 0, and
0 if x(j) = 0.

If a and b are points in R
k for which a ≤ b, define the set

(a, b] :=

{

x ∈ R
k :

a(j) < x(j) ≤ b(j) if a(j) < b(j), and
x(j) = a(j) if a(j) = b(j).

}

Theorem 6.1. Let n, k, and Ω be as in Problem 3.1 and let p ∈ Z
k \ ZΩ. Suppose that

there exists a nonzero multiindex β ≤ n1 satisfying
(6.2) ∀γ ∈ {0, . . . , β} \ {β}, [p− β, p− β + γ] ⊂ Ω
and that, if α is a nonzero multiindex ≤ n1 satisfying [p − α, p − α + γ] ⊂ Ω for all
γ ∈ {0, . . . , α} \ {α}, then α ≤ β. (That is, among all multiindices satisfying (6.2), β is
maximal.)
Let

Ω+ := Ω ∪ (p− 1β , p].

Then for every f : ZΩ → R there is an extension f+ : ZΩ+ → R with the following
properties.
(6.3) f+ = f on ZΩ.
(6.4) f 7→ f+ is a linear map.
(6.5) For some constant C(n, k) and for any multiindex α ≤ n1 ,

max{|♦α
z f

+| : [z, z + α] ⊂ Ω+} ≤ C(n, k)max{|♦α
z f | : [z, z + α] ⊂ Ω}.

Proof: The only multiinteger in (p−1β , p] is p itself, so to construct f+ satisfying (6.3),
it is only necessary to define f+(p).
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By (6.2), the multiintegers {p−β, . . . , p−β+γ} lie in Ω for each γ in {0 . . . , β}\{β},

so {p− β, . . . , p} \ {p} ⊂ ZΩ. Choose f+(p) so as to make ♦β
p−βf

+ = 0. Note that f+(p)
depends linearly on f ’s values on {p−β, . . . , p}\{p}, with coefficients that can be bounded
in terms of n and k, proving both (6.4) and the special case of (6.5) when α = 0.

To prove (6.5) in general, take z ∈ Z
k and α ∈ Z

k
+
\ {0} so that [z, z+α] is a subset of

Ω+ but not of Ω. Then [z, z+α] must have nonempty intersection with (p−1β , p]. That is,
some x in R

k lies in [z, z+α]∩ (p− 1β , p]. If i ∈ suppβ, then p(i)− 1 < x(i) ≤ (z+α)(i),
which implies that p(i) ≤ (z + α)(i), and if i 6∈ supp β, then p(i) = x(i) ≤ (z + α)(i).
Consequently, p ≤ z + α.

Now suppose that p(j) < (z + α)(j) for some j. Since both p(j) and (z + α)(j) are
integers, p(j)+1/2 must also be less than (z+α)(j), and therefore p+1/2ej ∈ [z, z+α] ⊂
Ω+. Since it does not lie in (p− 1β, p], the point p+ 1/2ej must lie in Ω, and because Ω
is a union of closed cells, p + 1/2ej ∈ [u, u + 1] ⊂ Ω for some multiinteger u . That is,
u(j) ≤ p(j) + 1/2 ≤ u(j) + 1, implying p(j) = u(j), and u(i) ≤ p(i) ≤ u(i) + 1 for all i
other than j, implying that p(i) is one of u(i) or u(i) + 1. Consequently, p is one of the
multiintegers in [u, u + 1], contradicting the hypothesis that p 6∈ ZΩ. Therefore, p must
equal z + α.

We’ll next see that α ≤ β. Suppose that γ ∈ {0, . . . , α}\{α} and x ∈ [p−α, p−α+γ] =
[z, z + γ]. Then z ≤ x ≤ z + γ ≤ z + α = p, so x ∈ [z, z + α]. Because γ 6= α, there’s an
integer j for which (z + γ)(j) ≤ p(j) − 1, which implies that x cannot be in (p − 1β, p].
That is,

[z, z + γ] ⊂ [z, z + α] \ (p− 1β , p] ⊂ Ω.

By hypothesis, this implies α ≤ β.
Because ♦β

p−βf
+ = 0, and because ♦β

p−β is a linear combination of

{

♦α
u : u ∈ {p− β, . . . , z}

}

with coefficients that can be bounded in terms of n and k, ♦α
z f

+ is a linear combination
of

(6.6)
{

♦α
uf : u ∈ {p− β, . . . , z} \ {z}

}

with coefficients that can be similarly bounded. For any u as in (6.6), [u, u+α] ⊂ [p−β, p]
and u+α 6= p together imply the existence of an integer j for which (u+α)(j) ≤ p(j)− 1.
Such j must lie in the support of β, and so

[u, u+ α] ⊂ [p− β, p− β + (β − ej)] ⊂ Ω

by (6.2). As a result,

|♦α
z f

+| ≤ C(n, k)max{|♦α
uf | : [u, u+ α] ⊂ Ω},

completing the proof of (6.5).
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Theorem 6.7. Let n and k be positive integers, and let Ω and Ω+ be sets as in Problem
3.1. Suppose that Ω ⊂ Ω+, that Ω+ satisfies Condition 4.15, and that there exists a linear
map f 7→ f+ from functions on ZΩ to functions on ZΩ+ such that f+ agrees with f on
ZΩ, and ∀α ≤ n1 ,

max{|♦α
z f

+| : [z, z + α] ⊂ Ω+} ≤ C(n, k,Ω)max{|♦α
z f | : [z, z + α] ⊂ Ω}.

Then there exists a mapping HΩ from the set of all positive diagonal matrices M and
functions f : MZΩ → R to functions HΩ,Mf with the following properties:
(6.8) HΩ,Mf ∈ C∞(MΩ).
(6.9) HΩ,Mf = f on MZΩ.
(6.10) HΩ,Mf depends linearly on f .
(6.11) There exists a constant C(n, k,Ω) so that, for any cell [u, u+ 1] ⊂ Ω and for any
α ≤ n1 ,

‖DαHΩ,Mf‖M [u,u+1] ≤ C(n, k,Ω)max{|♦α
M,zf | : [z, z + α] ⊂ Ω}.

Proof: Let HΩ,I : f 7→ (FΩ+,If
+) Ω, where F is the operator constructed in [9, Thm.

5.5], and then obtain HΩ,M from HΩ,I by scaling, as in (5.9).

Example 6.12: It was noted in Example 4.17 that the set Ω, seen again in Figure 6.13,
might admit a local, scale-independent solution to Problem 3.1 when n = 3. In fact,
Theorem 6.7 does just that, after an application of Theorem 6.1 (with β = 31) appends
the point p to ZΩ and the dashed cell to Ω to create a set Ω+ which satisfies Condition
4.15.

p

p′

U

V

Figure 6.13 (n = 3)

We know, by [9, Thm. 5.5], that the values of FΩ+,If
+ on any cell [u, u + 1] ⊂ Ω+

depend only on the values of f+ at the points {u−21 , . . . , u+31}∩ZΩ+ , and, by Theorem
6.1, that f+(p) depends on f ’s values at the points {p− β, . . . , p} \ {p} (marked ). So,
the values of HΩ,If on V depend only on the values of f at the points in ZΩ marked ©.
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This is consistent with Example 4.17, where it was shown that in any scale-independent
solution to Problem 3.1 on Ω, either the interpolant’s values on V must depend in part
on data at points not marked 1, or its values on U must depend in part on data at points
not marked 0, as would have been the case had we instead appended the point p′ to ZΩ

by applying Theorem 6.1 to −Ω.
As noted in the last example, one limitation of Theorem 6.1, that it only appends to

ZΩ points in the positive directions (e.g., up and to the right in R
2), can be overcome by

reorienting Ω. The details are in the lemma below, which we state without proof.

Lemma 6.14. Let N be a diagonal matrix of 1’s and -1’s. Suppose the sets Ω ⊂ Ω+ have
the property that each function f defined on ZΩ has an extension f+ to ZΩ+ satisfying
(6.3), (6.4), and (6.5). Then the same must be true of NΩ and NΩ+.

Example 6.15: Suppose that n = 3 and Ω is the set in Figure 6.16. Condition 4.15 is
violated along the horizontal line. If, by seven applications of Theorem 6.1, we extend f
to the points 1, 2, . . . , 7 and apply Theorem 6.7, then the values of HΩ,If on the darker
square would depend on f+(7) and therefore on f ’s values on the points marked (as
well as those marked ©).

Though scale-independent, HΩ,I is not local in a practical sense (although it is as
local as possible, which can be seen by the methods used in Example 4.17).

1 2 3 4 5 6 7

Figure 6.16 (n = 3)

We end with an example of when this method fails and some speculation in general
about why failure occurs.
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Example 6.19:



Tom Kunkle, http://kunklet.people.cofc.edu/ May 15, 2015
kunklet@cofc.edu, (843) 953-5921, fax: (843) 953-1410 Page 19

If Ω is the shaded set in Figure 6.17, then enlarging Ω to a Ω+ that satisfies Condition
4.15 would require appending one of the two dashed regions to Ω. Theorem 6.1 fails to
accomplish this. For example, if p were the additional point in the upper right corner of
the figure, then both (3, 2) and (2, 3) satisfy (6.2), but there’s no maximal β satisfying
(6.2).

In fact, no such extension scheme f 7→ f+ is possible. If we let f = 0 or 1 on ZΩ

as illustrated, then, regardless of which of the dashed regions we add to Ω, there’s no
extension f+ that will satisfy both

max{|♦(3,0)
z f+| : [z, z + 3e1] ⊂ ZΩ+} ≤ Cmax{|♦(3,0)

z f | : [z, z + 3e1] ⊂ ZΩ}

and

max{|♦(0,3)
z f+| : [z, z + 3e2] ⊂ ZΩ+} ≤ Cmax{|♦(0,3)

z f | : [z, z + 3e2] ⊂ ZΩ}

as Theorem 6.7 would require.
Similarly, in Figure 6.18, no extension of f to ZΩ+ can satisfy

max{|♦(3,0)
z f+| : [z, z + 3e1] ⊂ ZΩ+} ≤ Cmax{|♦(3,0)

z f | : [z, z + 3e1] ⊂ ZΩ}

as required in Theorem 6.7.
Perhaps Theorem 6.7 fails in Figure 6.18 because to expand Ω would require that

we append a group of cells bordering Ω in three directions—left, right, and either up or
down—so that the new data point will be involved in divided differences with the existing
data to its left, to its right, and either above or below. It may be that those are just too
many new divided differences to keep bounded. In contrast, when we append a cell to the
Ω in Figure 6.13, or even in Figure 6.16, the new data point is differenced with old data
only to its left and below in an apparently manageable number of divided differences.

To speculate further, Theorem 6.7 fails in Figure 6.17 for the different reason that Ω
violates Condition 4.15 in two directions—horizontal and vertical—in a very small area.
The larger set in Figure 4.9 violates Condition 4.15 in two directions but is still salvageable
by Theorem 6.1 because we can satisfy 4.15 by adding cells to parts of Ω that are some
distance apart (and border Ω in only two directions).

The author extends his thanks to an especially helpful referee.
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